- Generator
- Image-to-Image Translation
- glossary of computer graphics
- Discriminator
- Generative Adversarial Networks
- Controllable Generation
- WGANs
- Conditional Generation
- Components of GANs
- DCGANs
- Bias in GANs
- StyleGANs
Generative Adversarial Networks (GANs) 专项课程
Break into the GANs space. Master cutting-edge GANs techniques through three hands-on courses!
提供方


您将学到的内容有
Understand GAN components, build basic GANs using PyTorch and advanced DCGANs using convolutional layers, control your GAN and build conditional GAN
Compare generative models, use FID method to assess GAN fidelity and diversity, learn to detect bias in GAN, and implement StyleGAN techniques
Use GANs for data augmentation and privacy preservation, survey GANs applications, and examine and build Pix2Pix and CycleGAN for image translation
您将获得的技能
关于此 专项课程
应用的学习项目
Course 1: In this course, you will understand the fundamental components of GANs, build a basic GAN using PyTorch, use convolutional layers to build advanced DCGANs that processes images, apply W-Loss function to solve the vanishing gradient problem, and learn how to effectively control your GANs and build conditional GANs.
Course 2: In this course, you will understand the challenges of evaluating GANs, compare different generative models, use the Fréchet Inception Distance (FID) method to evaluate the fidelity and diversity of GANs, identify sources of bias and the ways to detect it in GANs, and learn and implement the techniques associated with the state-of-the-art StyleGAN.
Course 3: In this course, you will use GANs for data augmentation and privacy preservation, survey more applications of GANs, and build Pix2Pix and CycleGAN for image translation.
- Basic calculus, linear algebra, stats
- Grasp of AI, deep learning & CNNs
- Intermediate Python & experience with DL frameworks (TF / Keras / PyTorch)
- Basic calculus, linear algebra, stats
- Grasp of AI, deep learning & CNNs
- Intermediate Python & experience with DL frameworks (TF / Keras / PyTorch)
专项课程的运作方式
加入课程
Coursera 专项课程是帮助您掌握一门技能的一系列课程。若要开始学习,请直接注册专项课程,或预览专项课程并选择您要首先开始学习的课程。当您订阅专项课程的部分课程时,您将自动订阅整个专项课程。您可以只完成一门课程,您可以随时暂停学习或结束订阅。访问您的学生面板,跟踪您的课程注册情况和进度。
实践项目
每个专项课程都包括实践项目。您需要成功完成这个(些)项目才能完成专项课程并获得证书。如果专项课程中包括单独的实践项目课程,则需要在开始之前完成其他所有课程。
获得证书
在结束每门课程并完成实践项目之后,您会获得一个证书,您可以向您的潜在雇主展示该证书并在您的职业社交网络中分享。

提供方

deeplearning.ai
DeepLearning.AI is an education technology company that develops a global community of AI talent.
常见问题
退款政策是如何规定的?
我可以只注册一门课程吗?
有助学金吗?
我可以免费学习课程吗?
此课程是 100% 在线学习吗?是否需要现场参加课程?
完成专项课程后我会获得大学学分吗?
What are GANs?
What are the applications of GANs?
Why are GANs important?
What is the GANs Specialization about?
What will I learn in the GANs Specialization?
Who is the GANs Specialization for?
What background knowledge is necessary?
What will I be able to do upon completing the Specialization?
Who created the GANs Specialization?
Is this a standalone course or a Specialization?
Do I need to take the courses in a specific order?
Can I audit the Specialization?
完成专项课程需要多长时间?
还有其他问题吗?请访问 学生帮助中心。