关于此 专项课程
100% 在线课程

100% 在线课程

立即开始,按照自己的计划学习。
灵活的计划

灵活的计划

设置并保持灵活的截止日期。
初级

初级

完成时间(小时)

完成时间大约为1 个月

建议 10 小时/周
可选语言

英语(English)

字幕:英语(English), 阿拉伯语(Arabic)...

您将获得的技能

Data SciencePython ProgrammingRstudioSQL
100% 在线课程

100% 在线课程

立即开始,按照自己的计划学习。
灵活的计划

灵活的计划

设置并保持灵活的截止日期。
初级

初级

完成时间(小时)

完成时间大约为1 个月

建议 10 小时/周
可选语言

英语(English)

字幕:英语(English), 阿拉伯语(Arabic)...

专项课程 的运作方式

加入课程

Coursera 专项课程是帮助您掌握一门技能的一系列课程。若要开始学习,请直接注册专项课程,或预览专项课程并选择您要首先开始学习的课程。当您订阅专项课程的部分课程时,您将自动订阅整个专项课程。您可以只完成一门课程,您可以随时暂停学习或结束订阅。访问您的学生面板,跟踪您的课程注册情况和进度。

实践项目

每个专项课程都包括实践项目。您需要成功完成这个(些)项目才能完成专项课程并获得证书。如果专项课程中包括单独的实践项目课程,则需要在开始之前完成其他所有课程。

获得证书

在结束每门课程并完成实践项目之后,您会获得一个证书,您可以向您的潜在雇主展示该证书并在您的职业社交网络中分享。

how it works

此专项课程包含 4 门课程

课程1

What is Data Science?

4.6
3,161 个评分
531 个审阅
The art of uncovering the insights and trends in data has been around since ancient times. The ancient Egyptians used census data to increase efficiency in tax collection and they accurately predicted the flooding of the Nile river every year. Since then, people working in data science have carved out a unique and distinct field for the work they do. This field is data science. In this course, we will meet some data science practitioners and we will get an overview of what data science is today. LIMITED TIME OFFER: Subscription is only $39 USD per month for access to graded materials and a certificate....
课程2

Open Source tools for Data Science

4.6
1,595 个评分
200 个审阅
What are some of the most popular data science tools, how do you use them, and what are their features? In this course, you'll learn about Jupyter Notebooks, RStudio IDE, Apache Zeppelin and Data Science Experience. You will learn about what each tool is used for, what programming languages they can execute, their features and limitations. With the tools hosted in the cloud on Cognitive Class Labs, you will be able to test each tool and follow instructions to run simple code in Python, R or Scala. To end the course, you will create a final project with a Jupyter Notebook on IBM Data Science Experience and demonstrate your proficiency preparing a notebook, writing Markdown, and sharing your work with your peers. LIMITED TIME OFFER: Subscription is only $39 USD per month for access to graded materials and a certificate....
课程3

Data Science Methodology

4.5
1,109 个评分
112 个审阅
Despite the recent increase in computing power and access to data over the last couple of decades, our ability to use the data within the decision making process is either lost or not maximized at all too often, we don't have a solid understanding of the questions being asked and how to apply the data correctly to the problem at hand. This course has one purpose, and that is to share a methodology that can be used within data science, to ensure that the data used in problem solving is relevant and properly manipulated to address the question at hand. Accordingly, in this course, you will learn: - The major steps involved in tackling a data science problem. - The major steps involved in practicing data science, from forming a concrete business or research problem, to collecting and analyzing data, to building a model, and understanding the feedback after model deployment. - How data scientists think! LIMITED TIME OFFER: Subscription is only $39 USD per month for access to graded materials and a certificate....
课程4

Databases and SQL for Data Science

4.6
771 个评分
97 个审阅
Much of the world's data resides in databases. SQL (or Structured Query Language) is a powerful language which is used for communicating with and extracting data from databases. A working knowledge of databases and SQL is a must if you want to become a data scientist. The purpose of this course is to introduce relational database concepts and help you learn and apply knowledge of the SQL language. It is also intended to get you started with performing SQL access in a data science environment. The emphasis in this course is on hands-on and practical learning . As such, you will work with real databases, real data science tools, and real-world datasets. You will create a database instance in the cloud. Through a series of hands-on labs you will practice building and running SQL queries. You will also learn how to access databases from Jupyter notebooks using SQL and Python. No prior knowledge of databases, SQL, Python, or programming is required. Anyone can audit this course at no-charge. If you choose to take this course and earn the Coursera course certificate, you can also earn an IBM digital badge upon successful completion of the course. LIMITED TIME OFFER: Subscription is only $39 USD per month for access to graded materials and a certificate....

讲师

Avatar

Alex Aklson

Ph.D., Data Scientist
IBM Developer Skills Network
Avatar

Polong Lin

Data Scientist
IBM Developer Skills Network
Avatar

Rav Ahuja

Data Science Program Manager
IBM

关于 IBM

IBM offers a wide range of technology and consulting services; a broad portfolio of middleware for collaboration, predictive analytics, software development and systems management; and the world's most advanced servers and supercomputers. Utilizing its business consulting, technology and R&D expertise, IBM helps clients become "smarter" as the planet becomes more digitally interconnected. IBM invests more than $6 billion a year in R&D, just completing its 21st year of patent leadership. IBM Research has received recognition beyond any commercial technology research organization and is home to 5 Nobel Laureates, 9 US National Medals of Technology, 5 US National Medals of Science, 6 Turing Awards, and 10 Inductees in US Inventors Hall of Fame....

常见问题

  • 可以!点击您感兴趣的课程卡开始注册即可。注册并完成课程后,您可以获得可共享的证书,或者您也可以旁听该课程免费查看课程资料。如果您订阅的课程是某专项课程的一部分,系统会自动为您订阅完整的专项课程。访问您的学生面板,跟踪您的进度。

  • 此课程完全在线学习,无需到教室现场上课。您可以通过网络或移动设备随时随地访问课程视频、阅读材料和作业。

  • 此专项课程不提供大学学分,但部分大学可能会选择接受专项课程证书作为学分。查看您的合作院校了解详情。

  • The specialization consists of 4 courses. Suggested time to complete each course is 3-4 weeks. If you follow recommended timelines it would take 3 to 4 months to complete the entire specialization.

  • This specialization is intended for learners wanting to build foundational skills in Data Science. No prior background in data science or programming is required.

  • In order to get the most out of this specialization, it is recommended to take the courses in the order they are listed.

  • In this Specialization learners will develop foundational Data Science skills to prepare them for a career or further learning that involves more advanced topics in Data Science.

还有其他问题吗?请访问 学生帮助中心