关于此 专项课程
100% 在线课程

100% 在线课程

立即开始,按照自己的计划学习。
灵活的计划

灵活的计划

设置并保持灵活的截止日期。
初级

初级

完成时间(小时)

完成时间大约为2 个月

建议 10 小时/周
可选语言

英语(English)

字幕:英语(English), 越南语, 阿拉伯语(Arabic)...

您将获得的技能

ArduinoPython ProgrammingInternet Of Things (IOT)Raspberry Pi
100% 在线课程

100% 在线课程

立即开始,按照自己的计划学习。
灵活的计划

灵活的计划

设置并保持灵活的截止日期。
初级

初级

完成时间(小时)

完成时间大约为2 个月

建议 10 小时/周
可选语言

英语(English)

字幕:英语(English), 越南语, 阿拉伯语(Arabic)...

专项课程 的运作方式

加入课程

Coursera 专项课程是帮助您掌握一门技能的一系列课程。若要开始学习,请直接注册专项课程,或预览专项课程并选择您要首先开始学习的课程。当您订阅专项课程的部分课程时,您将自动订阅整个专项课程。您可以只完成一门课程,您可以随时暂停学习或结束订阅。访问您的学生面板,跟踪您的课程注册情况和进度。

实践项目

每个专项课程都包括实践项目。您需要成功完成这个(些)项目才能完成专项课程并获得证书。如果专项课程中包括单独的实践项目课程,则需要在开始之前完成其他所有课程。

获得证书

在结束每门课程并完成实践项目之后,您会获得一个证书,您可以向您的潜在雇主展示该证书并在您的职业社交网络中分享。

how it works

此专项课程包含 6 门课程

课程1

Introduction to the Internet of Things and Embedded Systems

4.6
3,652 个评分
958 个审阅
The explosive growth of the “Internet of Things” is changing our world and the rapid drop in price for typical IoT components is allowing people to innovate new designs and products at home. In this first class in the specialization you will learn the importance of IoT in society, the current components of typical IoT devices and trends for the future. IoT design considerations, constraints and interfacing between the physical world and your device will also be covered. You will also learn how to make design trade-offs between hardware and software. We'll also cover key components of networking to ensure that students understand how to connect their device to the Internet. Please note that this course does not include discussion forums. Upon completing this course, you will be able to: 1. Define the term “Internet of Things” 2. State the technological trends which have led to IoT 3. Describe the impact of IoT on society 4. Define what an embedded system is in terms of its interface 5. Enumerate and describe the components of an embedded system 6. Describe the interactions of embedded systems with the physical world 7. Name the core hardware components most commonly used in IoT devices 8. Describe the interaction between software and hardware in an IoT device 9. Describe the role of an operating system to support software in an IoT device 10. Explain the use of networking and basic networking hardware 11. Describe the structure of the Internet 12. Describe the meaning of a “network protocol” 13. Explain MANETs and their relation to IoT...
课程2

The Arduino Platform and C Programming

4.6
2,766 个评分
621 个审阅
The Arduino is an open-source computer hardware/software platform for building digital devices and interactive objects that can sense and control the physical world around them. In this class you will learn how the Arduino platform works in terms of the physical board and libraries and the IDE (integrated development environment). You will also learn about shields, which are smaller boards that plug into the main Arduino board to perform other functions such as sensing light, heat, GPS tracking, or providing a user interface display. The course will also cover programming the Arduino using C code and accessing the pins on the board via the software to control external devices. Please note that this course does not include discussion forums. Upon completing this course, you will be able to: 1. Outline the composition of the Arduino development board 2. Describe what it means to program the board's firmware 3. Read board schematics 4. Install Arduino IDE 5. Describe what "shields" are and how they are used 6. Specify the role of libraries in the use of shields 7. Compile and run a program 8. Name C Variables and Types 9. Name common C operators 10. Use conditionals and loops 11. Explain functions, their definition and invocation 12. Explain the implications of global variables 13. Undertake the Arduino build process 14. Describe the role of the tools behind the IDE 15. Describe how to invoke functions in classes 16. Explain the structure of an Arduino sketch 17. Access the pins of the Arduino 18. Differentiate between digital and analog pin 19. Debug embedded software 20. Explain the importance of controllability and observability in the debugging process 21. Describe common debugging architectures for embedded systems 22. Explain how the UART Serial communication protocol works 23. Describe how the Arduino Serial library performs serial communication...
课程3

Interfacing with the Arduino

4.7
1,619 个评分
329 个审阅
Arduino senses the environment by receiving inputs from add-on devices such as sensors, and can control the world around it by adjusting lights, motors, and other actuators. In this class you will learn how and when to use the different types of sensors and how to connect them to the Arduino. Since the external world uses continuous or analog signals and the hardware is digital you will learn how these signals are converted back-and-forth and how this must be considered as you program your device. You'll also learn about the use of Arduino-specific shields and the shields software libraries to interface with the real world. Please note that this course does not include discussion forums....
课程4

The Raspberry Pi Platform and Python Programming for the Raspberry Pi

4.6
1,327 个评分
238 个审阅
The Raspberry Pi is a small, affordable single-board computer that you will use to design and develop fun and practical IoT devices while learning programming and computer hardware. In addition, you will learn how to set up up the Raspberry Pi environment, get a Linux operating system running, and write and execute some basic Python code on the Raspberry Pi. You will also learn how to use Python-based IDE (integrated development environments) for the Raspberry Pi and how to trace and debug Python code on the device. Please note that this course does not include discussion forums....

讲师

Avatar

Ian Harris

Professor
Department of Computer Science

关于 University of California, Irvine

Since 1965, the University of California, Irvine has combined the strengths of a major research university with the bounty of an incomparable Southern California location. UCI’s unyielding commitment to rigorous academics, cutting-edge research, and leadership and character development makes the campus a driving force for innovation and discovery that serves our local, national and global communities in many ways....

常见问题

  • 可以!点击您感兴趣的课程卡开始注册即可。注册并完成课程后,您可以获得可共享的证书,或者您也可以旁听该课程免费查看课程资料。如果您订阅的课程是某专项课程的一部分,系统会自动为您订阅完整的专项课程。访问您的学生面板,跟踪您的进度。

  • 此课程完全在线学习,无需到教室现场上课。您可以通过网络或移动设备随时随地访问课程视频、阅读材料和作业。

  • 此专项课程不提供大学学分,但部分大学可能会选择接受专项课程证书作为学分。查看您的合作院校了解详情。

  • Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in six months.

  • Each course in the Specialization is offered on a regular schedule, with sessions starting about once per month. If you don't complete a course on the first try, you can easily transfer to the next session, and your completed work and grades will carry over.

  • None! This is an introductory program and has no specific prerequisites. An interest in computer hardware, software, and the internet of things (IoT) is all that is required.

  • You can pay for the entire Specialization upfront, or pay individually for each course as you progress. Financial aid is available for learners who qualify.

  • We recommend taking the courses in the order presented, as each course will build on material from previous courses.

  • Coursera courses and certificates don't carry university credit, though some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • You’ll be able to design and create a simple IoT device while exploring different IoT technologies and their applications. Using both the Arduino and Raspberry Pi hardware systems, you’ll develop basic code using both the Python and C programming languages. Best of all you’ll have fun using new technologies that will be an ever-increasing part of our future.

还有其他问题吗?请访问 学生帮助中心