关于此 专项课程

What is machine learning, and what kinds of problems can it solve? What are the five phases of converting a candidate use case to be driven by machine learning, and why is it important that the phases not be skipped? Why are neural networks so popular now? How can you set up a supervised learning problem and find a good, generalizable solution using gradient descent and a thoughtful way of creating datasets? Learn how to write distributed machine learning models that scale in Tensorflow, scale out the training of those models. and offer high-performance predictions. Convert raw data to features in a way that allows ML to learn important characteristics from the data and bring human insight to bear on the problem. Finally, learn how to incorporate the right mix of parameters that yields accurate, generalized models and knowledge of the theory to solve specific types of ML problems. You will experiment with end-to-end ML, starting from building an ML-focused strategy and progressing into model training, optimization, and productionalization with hands-on labs using Google Cloud Platform. > By enrolling in this specialization you agree to the Qwiklabs Terms of Service as set out in the FAQ and located at: https://qwiklabs.com/terms_of_service <
学生职业成果
40%
完成此 专项课程 后开始了新的职业。
23%
加薪或升职。
可分享的证书
完成后获得证书
100% 在线课程
立即开始,按照自己的计划学习。
灵活的计划
设置并保持灵活的截止日期。
中级
完成课程大约需要 5 个月
建议进度:5 小时/周
英语(English)
学生职业成果
40%
完成此 专项课程 后开始了新的职业。
23%
加薪或升职。
可分享的证书
完成后获得证书
100% 在线课程
立即开始,按照自己的计划学习。
灵活的计划
设置并保持灵活的截止日期。
中级
完成课程大约需要 5 个月
建议进度:5 小时/周
英语(English)

此专项课程包含 5 门课程

课程1

课程 1

How Google does Machine Learning

4.6
6,451 个评分
1,017 条评论
课程2

课程 2

Launching into Machine Learning

4.6
3,977 个评分
458 条评论
课程3

课程 3

TensorFlow 简介

4.4
2,532 个评分
309 条评论
课程4

课程 4

特色工程

4.5
1,615 个评分
177 条评论

提供方

Placeholder

Google 云端平台

常见问题

还有其他问题吗?请访问 学生帮助中心