About this 专项课程
100% 在线课程

100% 在线课程

立即开始,按照自己的计划学习。
灵活的计划

灵活的计划

设置并保持灵活的截止日期。
初级

初级

完成时间(小时)

完成时间大约为3 个月

建议 6 小时/周
可选语言

英语(English)

字幕:英语(English), 中文(简体), 格鲁吉亚语, 爱沙尼亚语, 德语(German), 泰语, 日语, 尼泊尔语...

您将获得的技能

Ggplot2Data Visualization (DataViz)R ProgrammingObject-Oriented Programming (OOP)
100% 在线课程

100% 在线课程

立即开始,按照自己的计划学习。
灵活的计划

灵活的计划

设置并保持灵活的截止日期。
初级

初级

完成时间(小时)

完成时间大约为3 个月

建议 6 小时/周
可选语言

英语(English)

字幕:英语(English), 中文(简体), 格鲁吉亚语, 爱沙尼亚语, 德语(German), 泰语, 日语, 尼泊尔语...

How the 专项课程 Works

加入课程

Coursera 专项课程是帮助您掌握一门技能的一系列课程。若要开始学习,请直接注册专项课程,或预览专项课程并选择您要首先开始学习的课程。当您订阅专项课程的部分课程时,您将自动订阅整个专项课程。您可以只完成一门课程,您可以随时暂停学习或结束订阅。访问您的学生面板,跟踪您的课程注册情况和进度。

实践项目

每个专项课程都包括实践项目。您需要成功完成这个(些)项目才能完成专项课程并获得证书。如果专项课程中包括单独的实践项目课程,则需要在开始之前完成其他所有课程。

获得证书

在结束每门课程并完成实践项目之后,您会获得一个证书,您可以向您的潜在雇主展示该证书并在您的职业社交网络中分享。

how it works

此专项课程包含 5 门课程

课程1

The R Programming Environment

4.4
711 个评分
189 个审阅
This course provides a rigorous introduction to the R programming language, with a particular focus on using R for software development in a data science setting. Whether you are part of a data science team or working individually within a community of developers, this course will give you the knowledge of R needed to make useful contributions in those settings. As the first course in the Specialization, the course provides the essential foundation of R needed for the following courses. We cover basic R concepts and language fundamentals, key concepts like tidy data and related "tidyverse" tools, processing and manipulation of complex and large datasets, handling textual data, and basic data science tasks. Upon completing this course, learners will have fluency at the R console and will be able to create tidy datasets from a wide range of possible data sources....
课程2

Advanced R Programming

4.3
325 个评分
82 个审阅
This course covers advanced topics in R programming that are necessary for developing powerful, robust, and reusable data science tools. Topics covered include functional programming in R, robust error handling, object oriented programming, profiling and benchmarking, debugging, and proper design of functions. Upon completing this course you will be able to identify and abstract common data analysis tasks and to encapsulate them in user-facing functions. Because every data science environment encounters unique data challenges, there is always a need to develop custom software specific to your organization’s mission. You will also be able to define new data types in R and to develop a universe of functionality specific to those data types to enable cleaner execution of data science tasks and stronger reusability within a team....
课程3

Building R Packages

4.2
146 个评分
39 个审阅
Writing good code for data science is only part of the job. In order to maximizing the usefulness and reusability of data science software, code must be organized and distributed in a manner that adheres to community-based standards and provides a good user experience. This course covers the primary means by which R software is organized and distributed to others. We cover R package development, writing good documentation and vignettes, writing robust software, cross-platform development, continuous integration tools, and distributing packages via CRAN and GitHub. Learners will produce R packages that satisfy the criteria for submission to CRAN....
课程4

Building Data Visualization Tools

3.9
106 个评分
26 个审阅
The data science revolution has produced reams of new data from a wide variety of new sources. These new datasets are being used to answer new questions in way never before conceived. Visualization remains one of the most powerful ways draw conclusions from data, but the influx of new data types requires the development of new visualization techniques and building blocks. This course provides you with the skills for creating those new visualization building blocks. We focus on the ggplot2 framework and describe how to use and extend the system to suit the specific needs of your organization or team. Upon completing this course, learners will be able to build the tools needed to visualize a wide variety of data types and will have the fundamentals needed to address new data types as they come about....

讲师

Avatar

Roger D. Peng, PhD

Associate Professor, Biostatistics
Bloomberg School of Public Health
Avatar

Brooke Anderson

Assistant Professor, Environmental & Radiological Health Sciences
Colorado State University

关于 Johns Hopkins University

The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world....

常见问题

  • 可以!点击您感兴趣的课程卡开始注册即可。注册并完成课程后,您可以获得可共享的证书,或者您也可以旁听该课程免费查看课程资料。如果您订阅的课程是某专项课程的一部分,系统会自动为您订阅完整的专项课程。访问您的学生面板,跟踪您的进度。

  • 此课程完全在线学习,无需到教室现场上课。您可以通过网络或移动设备随时随地访问课程视频、阅读材料和作业。

  • 此专项课程不提供大学学分,但部分大学可能会选择接受专项课程证书作为学分。查看您的合作院校了解详情。

  • Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in 3-6 months.

  • Some programming experience (in any language) is recommended. We also suggest a working knowledge of mathematics up to algebra (neither calculus or linear algebra are required).

  • We strongly recommend that you take the courses in order.

  • You will be able to use R to create new data science tools as part of a team or a community of developers. You will be able to build R packages, develop custom visualizations, and apply modern software development tools to create reusable code for solving data science problems.

还有其他问题吗?请访问 学生帮助中心