关于此 专项课程
26,807 次近期查看

开始攻读学位

尝试观看 Imperial MPH 学位 学位的课程视频、阅读课程以及完成自主学习作业

100% 在线课程

立即开始,按照自己的计划学习。

灵活的计划

设置并保持灵活的截止日期。

初级

Familiarity with seeing graphs and tables. Basic numeracy (so NOT calculus, trigonometry etc). No medical, statistical or R knowledge is assumed.

完成时间大约为2 个月

建议 11 小时/周

英语(English)

字幕:英语(English)

您将学到的内容有

  • Check

    Recognise the key components of statistical thinking in order to defend the critical role of statistics in modern public health research and practice

  • Check

    Describe a given data set from scratch using descriptive statistics and graphical methods as a first step for more advanced analysis using R software

  • Check

    Apply appropriate methods in order to formulate and examine statistical associations between variables within a data set in R

  • Check

    Interpret the output from your analysis and appraise the role of chance and bias as explanations for your results

您将获得的技能

Statistical ThinkingSurvival AnalysisLogistic RegressionData analysis with RLinear Regression

开始攻读学位

尝试观看 Imperial MPH 学位 学位的课程视频、阅读课程以及完成自主学习作业

100% 在线课程

立即开始,按照自己的计划学习。

灵活的计划

设置并保持灵活的截止日期。

初级

Familiarity with seeing graphs and tables. Basic numeracy (so NOT calculus, trigonometry etc). No medical, statistical or R knowledge is assumed.

完成时间大约为2 个月

建议 11 小时/周

英语(English)

字幕:英语(English)

专项课程 的运作方式

加入课程

Coursera 专项课程是帮助您掌握一门技能的一系列课程。若要开始学习,请直接注册专项课程,或预览专项课程并选择您要首先开始学习的课程。当您订阅专项课程的部分课程时,您将自动订阅整个专项课程。您可以只完成一门课程,您可以随时暂停学习或结束订阅。访问您的学生面板,跟踪您的课程注册情况和进度。

实践项目

每个专项课程都包括实践项目。您需要成功完成这个(些)项目才能完成专项课程并获得证书。如果专项课程中包括单独的实践项目课程,则需要在开始之前完成其他所有课程。

获得证书

在结束每门课程并完成实践项目之后,您会获得一个证书,您可以向您的潜在雇主展示该证书并在您的职业社交网络中分享。

how it works

此专项课程包含 4 门课程

课程1

Introduction to Statistics & Data Analysis in Public Health

4.7
84 个评分
20 个审阅

Welcome to Introduction to Statistics & Data Analysis in Public Health! This course will teach you the core building blocks of statistical analysis - types of variables, common distributions, hypothesis testing - but, more than that, it will enable you to take a data set you've never seen before, describe its keys features, get to know its strengths and quirks, run some vital basic analyses and then formulate and test hypotheses based on means and proportions. You'll then have a solid grounding to move on to more sophisticated analysis and take the other courses in the series. You'll learn the popular, flexible and completely free software R, used by statistics and machine learning practitioners everywhere. It's hands-on, so you'll first learn about how to phrase a testable hypothesis via examples of medical research as reported by the media. Then you'll work through a data set on fruit and vegetable eating habits: data that are realistically messy, because that's what public health data sets are like in reality. There will be mini-quizzes with feedback along the way to check your understanding. The course will sharpen your ability to think critically and not take things for granted: in this age of uncontrolled algorithms and fake news, these skills are more important than ever. Prerequisites Some formulae are given to aid understanding, but this is not one of those courses where you need a mathematics degree to follow it. You will need only basic numeracy (for example, we will not use calculus) and familiarity with graphical and tabular ways of presenting results. No knowledge of R or programming is assumed.

...
课程2

Linear Regression in R for Public Health

4.8
38 个评分
7 个审阅

Welcome to Linear Regression in R for Public Health! Public Health has been defined as “the art and science of preventing disease, prolonging life and promoting health through the organized efforts of society”. Knowing what causes disease and what makes it worse are clearly vital parts of this. This requires the development of statistical models that describe how patient and environmental factors affect our chances of getting ill. This course will show you how to create such models from scratch, beginning with introducing you to the concept of correlation and linear regression before walking you through importing and examining your data, and then showing you how to fit models. Using the example of respiratory disease, these models will describe how patient and other factors affect outcomes such as lung function. Linear regression is one of a family of regression models, and the other courses in this series will cover two further members. Regression models have many things in common with each other, though the mathematical details differ. This course will show you how to prepare the data, assess how well the model fits the data, and test its underlying assumptions – vital tasks with any type of regression. You will use the free and versatile software package R, used by statisticians and data scientists in academia, governments and industry worldwide.

...
课程3

Logistic Regression in R for Public Health

4.6
25 个评分
3 个审阅

Welcome to Logistic Regression in R for Public Health! Why logistic regression for public health rather than just logistic regression? Well, there are some particular considerations for every data set, and public health data sets have particular features that need special attention. In a word, they're messy. Like the others in the series, this is a hands-on course, giving you plenty of practice with R on real-life, messy data, with predicting who has diabetes from a set of patient characteristics as the worked example for this course. Additionally, the interpretation of the outputs from the regression model can differ depending on the perspective that you take, and public health doesn’t just take the perspective of an individual patient but must also consider the population angle. That said, much of what is covered in this course is true for logistic regression when applied to any data set, so you will be able to apply the principles of this course to logistic regression more broadly too. By the end of this course, you will be able to: Explain when it is valid to use logistic regression Define odds and odds ratios Run simple and multiple logistic regression analysis in R and interpret the output Evaluate the model assumptions for multiple logistic regression in R Describe and compare some common ways to choose a multiple regression model This course builds on skills such as hypothesis testing, p values, and how to use R, which are covered in the first two courses of the Statistics for Public Health specialisation. If you are unfamiliar with these skills, we suggest you review Statistical Thinking for Public Health and Linear Regression for Public Health before beginning this course. If you are already familiar with these skills, we are confident that you will enjoy furthering your knowledge and skills in Statistics for Public Health: Logistic Regression for Public Health. We hope you enjoy the course!

...
课程4

Survival Analysis in R for Public Health

3.9
17 个评分
3 个审阅

Welcome to Survival Analysis in R for Public Health! The three earlier courses in this series covered statistical thinking, correlation, linear regression and logistic regression. This one will show you how to run survival – or “time to event” – analysis, explaining what’s meant by familiar-sounding but deceptive terms like hazard and censoring, which have specific meanings in this context. Using the popular and completely free software R, you’ll learn how to take a data set from scratch, import it into R, run essential descriptive analyses to get to know the data’s features and quirks, and progress from Kaplan-Meier plots through to multiple Cox regression. You’ll use data simulated from real, messy patient-level data for patients admitted to hospital with heart failure and learn how to explore which factors predict their subsequent mortality. You’ll learn how to test model assumptions and fit to the data and some simple tricks to get round common problems that real public health data have. There will be mini-quizzes on the videos and the R exercises with feedback along the way to check your understanding. Prerequisites Some formulae are given to aid understanding, but this is not one of those courses where you need a mathematics degree to follow it. You will need basic numeracy (for example, we will not use calculus) and familiarity with graphical and tabular ways of presenting results. The three previous courses in the series explained concepts such as hypothesis testing, p values, confidence intervals, correlation and regression and showed how to install R and run basic commands. In this course, we will recap all these core ideas in brief, but if you are unfamiliar with them, then you may prefer to take the first course in particular, Statistical Thinking in Public Health, and perhaps also the second, on linear regression, before embarking on this one.

...

讲师

Avatar

Alex Bottle

Reader in Medical Statistics
School of Public Health
Avatar

Victoria Cornelius

Senior Lecturer in Medical Statistics and Clinical Trials

领先获取学位

此 专项课程 隶属于 伦敦帝国学院 提供的 100% 在线 Global Master of Public Health。立即开始学习开放课程或专项课程,观看 iMBA 教师的课程并完成自主学习作业。 完成每门课程后,您将获得一个证书,您可以添加到 LinkedIn 和简历中。 如果申请并被录取参加全部课程,您的课程将计入您的学位学习进程。

关于 伦敦帝国学院

Imperial College London is a world top ten university with an international reputation for excellence in science, engineering, medicine and business. located in the heart of London. Imperial is a multidisciplinary space for education, research, translation and commercialisation, harnessing science and innovation to tackle global challenges. Imperial students benefit from a world-leading, inclusive educational experience, rooted in the College’s world-leading research. Our online courses are designed to promote interactivity, learning and the development of core skills, through the use of cutting-edge digital technology....

常见问题

  • 可以!点击您感兴趣的课程卡开始注册即可。注册并完成课程后,您可以获得可共享的证书,或者您也可以旁听该课程免费查看课程资料。如果您订阅的课程是某专项课程的一部分,系统会自动为您订阅完整的专项课程。访问您的学生面板,跟踪您的进度。

  • 此课程完全在线学习,无需到教室现场上课。您可以通过网络或移动设备随时随地访问课程视频、阅读材料和作业。

  • 此专项课程不提供大学学分,但部分大学可能会选择接受专项课程证书作为学分。查看您的合作院校了解详情。

  • 3/4 hours a week for 3 to 4 months

  • The specialisation will assume no knowledge of statistics or R software.

  • We recommend taking the courses in the order in which they are displayed on the main page of the Specialization

还有其他问题吗?请访问 学生帮助中心