This course is the fourth course in the Electrodynamics series, and is directly proceeded by Electrodynamics: Electric and Magnetic Fields. Previously, we have learned about visualization of fields and solutions which were not time dependent. Here, we will return to Maxwell's Equations and use them to produce wave equations which can be used to analyze complex systems, such as oscillating dipoles. We will also introduce AC circuits, and how they can be simplified, solved, and applied.
提供方
课程信息
提供方

韩国科学技术高等研究院 (KAIST)
The Korea Advanced Institute of Science and Technology (KAIST) was established in 1971 by the Korean government as the nation’s first research-intensive graduate school for science, engineering and technology. It has now grown into one of the world’s best universities, delivering top notch education and research programs for undergraduate and graduate students. KAIST encourages interdisciplinary and convergent research across a wide spectrum of disciplines, as well as strong collaborations with industry and global institutions.
教学大纲 - 您将从这门课程中学到什么
The Laws of Induction
This lecture will cover the concept of flux, EMF, and inductance. We will start by describing how the EMF is produced, how it can affect other units, and its different applications. Then, the relationship between coils of wire is described using mutual inductance, and the effect of a wire on itself is discussed in terms of self-inductance.
The Maxwell Equations
In previous lectures, we have been working with a simple version of Maxwell’s 4th equation. In this lecture, we will discuss the more complete form, and all of the equations necessary to describe classical physics. Furthermore, we will start to analyze the concept of traveling fields, which propagate free from their source. Finally, we will present the wave equation for the magnetic and electric potentials.
Maxwell's Equations in Free Space
Continuing from the previous lecture, we will discuss traveling waves in greater detail. We will expand on the wave equation by showing how both Electric and Magnetic fields also can be modeled by the 3-D wave equation. Furthermore, we will distinguish between how spherical and one-dimensional fields travel.
Maxwell's Equations with Currents and Charges
In this lecture, we delve into deeply into relativistic and time-dependent solutions. To do this, we show how different equations can be corrected to account for position changes. We will expand on situations from previous lectures, and show how the equations modeling them will change if they are time-dependent. Finally we will discuss how Maxwell’s equations lead to the Lorentz transformation.
审阅
来自ELECTRODYNAMICS: IN-DEPTH SOLUTIONS FOR MAXWELL’S EQUATIONS的热门评论
I did all the courses in this specialization. Thank you so much. I used to have an electromagnetism-phobia , but now I'm confident.
I felt this was a valuable course and allowed me to get a good grasp of how statistics can be applied
A great course whose excellent explanations allowed me to get good grasp on the concepts presented
Excellent explaination of concepts, in mere future I shall be happy to attend more lectures on it
关于 Electrodynamics 专项课程
If you want to apply electrodynamics to your materials research project, this Specialization will help you do so. Electromagnetic force is one of the fundamental forces that hold atoms and molecules together, which are the building blocks of any materials.In four courses, you will learn the foundations of electrodynamics starting from the nature of electrical force up to the level of in-depth solutions of Maxwell equations. We will walk you through vector calculus, concepts of field, flux and circulation, electrostatics, and magnetostatics as well as electrodynamics. By the end of this Specialization you will understand four beautiful equations organized by Maxwell in a full picture. Special relativity will be covered as well to grasp the idea that magnetism is a relativistic effect of electricity. The approach taken in this Specialization complements traditional approaches, covering a fairly complete treatment of the physics of electricity and magnetism, and adds Feynman’s unique and vital approach of grasping a whole picture of the physical universe. In addition, this Specialization uniquely bridges the gap between the knowledge of electrodynamics and its practical applications to research in materials science, information technology, electrical engineering, chemistry, chemical engineering, energy storage, energy harvesting, and other materials related fields.

常见问题
我什么时候能够访问课程视频和作业?
我订阅此专项课程后会得到什么?
Is financial aid available?
完成课程后,我会获得大学学分吗?
还有其他问题吗?请访问 学生帮助中心。