课程信息
4.5
1,021 个评分
115 个审阅
100% 在线

100% 在线

立即开始,按照自己的计划学习。
可灵活调整截止日期

可灵活调整截止日期

根据您的日程表重置截止日期。
中级

中级

完成时间(小时)

完成时间大约为7 小时

建议:5 - 7 hours per week...
可选语言

英语(English)

字幕:英语(English), 法语(French), 巴西葡萄牙语, 德语(German), 西班牙语(Spanish), 日语...

您将获得的技能

TensorflowBigqueryMachine LearningData Cleansing
100% 在线

100% 在线

立即开始,按照自己的计划学习。
可灵活调整截止日期

可灵活调整截止日期

根据您的日程表重置截止日期。
中级

中级

完成时间(小时)

完成时间大约为7 小时

建议:5 - 7 hours per week...
可选语言

英语(English)

字幕:英语(English), 法语(French), 巴西葡萄牙语, 德语(German), 西班牙语(Spanish), 日语...

教学大纲 - 您将从这门课程中学到什么

1
完成时间(小时)
完成时间为 9 分钟

Introduction

In this course you’ll get foundational ML knowledge so that you understand the terminology that we use throughout the specialization. You will also learn practical tips and pitfalls from ML practitioners here at Google and walk away with the code and the knowledge to bootstrap your own ML models....
Reading
2 个视频 (总计 9 分钟)
Video2 个视频
Intro to Qwiklabs5分钟
完成时间(小时)
完成时间为 1 小时

Practical ML

In this module, we will introduce some of the main types of machine learning and review the history of ML leading up to the state of the art so that you can accelerate your growth as an ML practitioner....
Reading
10 个视频 (总计 62 分钟), 1 个测验
Video10 个视频
Supervised Learning5分钟
Regression and Classification11分钟
Short History of ML: Linear Regression7分钟
Short History of ML: Perceptron5分钟
Short History of ML: Neural Networks7分钟
Short History of ML: Decision Trees5分钟
Short History of ML: Kernel Methods4分钟
Short History of ML: Random Forests4分钟
Short History of ML: Modern Neural Networks8分钟
Quiz1 个练习
Module Quiz6分钟
完成时间(小时)
完成时间为 1 小时

Optimization

In this module we will walk you through how to optimize your ML models....
Reading
13 个视频 (总计 61 分钟), 1 个测验
Video13 个视频
Defining ML Models4分钟
Introducing the Natality Dataset6分钟
Introducing Loss Functions6分钟
Gradient Descent5分钟
Troubleshooting a Loss Curve2分钟
ML Model Pitfalls6分钟
Lab: Introducing the TensorFlow Playground6分钟
Lab: TensorFlow Playground - Advanced3分钟
Lab: Practicing with Neural Networks6分钟
Loss Curve Troubleshooting1分钟
Performance Metrics3分钟
Confusion Matrix5分钟
Quiz1 个练习
Module Quiz6分钟
完成时间(小时)
完成时间为 3 小时

Generalization and Sampling

Now it’s time to answer a rather weird question: when is the most accurate ML model not the right one to pick? As we hinted at in the last module on Optimization -- simply because a model has a loss metric of 0 for your training dataset does not mean it will perform well on new data in the real world. ...
Reading
9 个视频 (总计 64 分钟), 3 个测验
Video9 个视频
Generalization and ML Models6分钟
When to Stop Model Training5分钟
Creating Repeatable Samples in BigQuery6分钟
Demo: Splitting Datasets in BigQuery8分钟
Lab Introduction1分钟
Lab Solution Walkthrough9分钟
Lab Introduction2分钟
Lab Solution Walkthrough23分钟
Quiz1 个练习
Module Quiz12分钟
完成时间(小时)
完成时间为 3 分钟

Summary

...
Reading
1 个视频 (总计 3 分钟)
Video1 个视频
4.5
115 个审阅Chevron Right

热门审阅

创建者 PTDec 2nd 2018

This is an awesome module. It will open up so much inside story of ML process which is core of the topic with such a simplicity. It greatly increases my interest into this topic and this course :)

创建者 PAAug 4th 2018

Good course, covering all the basics about machine learning and most importantly, everything that surrounds an ml project and you need to take into account to make your ml project successful.

关于 Google Cloud

We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success....

关于 Machine Learning with TensorFlow on Google Cloud Platform 专项课程

What is machine learning, and what kinds of problems can it solve? What are the five phases of converting a candidate use case to be driven by machine learning, and why is it important that the phases not be skipped? Why are neural networks so popular now? How can you set up a supervised learning problem and find a good, generalizable solution using gradient descent and a thoughtful way of creating datasets? Learn how to write distributed machine learning models that scale in Tensorflow, scale out the training of those models. and offer high-performance predictions. Convert raw data to features in a way that allows ML to learn important characteristics from the data and bring human insight to bear on the problem. Finally, learn how to incorporate the right mix of parameters that yields accurate, generalized models and knowledge of the theory to solve specific types of ML problems. You will experiment with end-to-end ML, starting from building an ML-focused strategy and progressing into model training, optimization, and productionalization with hands-on labs using Google Cloud Platform. > By enrolling in this specialization you agree to the Qwiklabs Terms of Service as set out in the FAQ and located at: https://qwiklabs.com/terms_of_service <...
Machine Learning with TensorFlow on Google Cloud Platform

常见问题

  • 是的,您可以在注册之前预览第一个视频和查看授课大纲。您必须购买课程,才能访问预览不包括的内容。

  • 如果您决定在班次开始日期之前注册课程,那么您将可以访问课程的所有课程视频和阅读材料。班次开始之后,您便可以提交作业。

  • 在您注册且班次开课之后,您将可以访问所有视频和其他资源,包括阅读材料内容和课程论坛。您将能够查看和提交练习作业,并完成所需的评分作业以获得成绩和课程证书。

  • 如果您成功完成课程,您的电子课程证书将添加到您的成就页中,您可以通过该页打印您的课程证书或将其添加到您的领英档案中。

  • 此课程是 Coursera 上提供的众多课程之一,当前只对已购买课程或已获得助学金的学生开放。如果您要学习此课程,但却承担不起课程费用,我们建议您提交助学金申请。

还有其他问题吗?请访问 学生帮助中心