课程信息
109,860 次近期查看

第 2 门课程(共 4 门)

100% 在线

立即开始,按照自己的计划学习。

可灵活调整截止日期

根据您的日程表重置截止日期。

完成时间大约为36 小时

建议:6 weeks of study, 5-8 hours/week...

英语(English)

字幕:英语(English), 韩语, 阿拉伯语(Arabic)

您将获得的技能

Linear RegressionRidge RegressionLasso (Statistics)Regression Analysis
学习Course的学生是
  • Data Scientists
  • Machine Learning Engineers
  • Biostatisticians
  • Data Analysts
  • Risk Managers

第 2 门课程(共 4 门)

100% 在线

立即开始,按照自己的计划学习。

可灵活调整截止日期

根据您的日程表重置截止日期。

完成时间大约为36 小时

建议:6 weeks of study, 5-8 hours/week...

英语(English)

字幕:英语(English), 韩语, 阿拉伯语(Arabic)

教学大纲 - 您将从这门课程中学到什么

1
完成时间为 1 小时

Welcome

5 个视频 (总计 20 分钟), 3 个阅读材料
5 个视频
Welcome!1分钟
What is the course about?3分钟
Outlining the first half of the course5分钟
Outlining the second half of the course5分钟
Assumed background4分钟
3 个阅读材料
Important Update regarding the Machine Learning Specialization10分钟
Slides presented in this module10分钟
Reading: Software tools you'll need10分钟
完成时间为 3 小时

Simple Linear Regression

25 个视频 (总计 122 分钟), 5 个阅读材料, 2 个测验
25 个视频
Regression fundamentals: data & model8分钟
Regression fundamentals: the task2分钟
Regression ML block diagram4分钟
The simple linear regression model2分钟
The cost of using a given line6分钟
Using the fitted line6分钟
Interpreting the fitted line6分钟
Defining our least squares optimization objective3分钟
Finding maxima or minima analytically7分钟
Maximizing a 1d function: a worked example2分钟
Finding the max via hill climbing6分钟
Finding the min via hill descent3分钟
Choosing stepsize and convergence criteria6分钟
Gradients: derivatives in multiple dimensions5分钟
Gradient descent: multidimensional hill descent6分钟
Computing the gradient of RSS7分钟
Approach 1: closed-form solution5分钟
Approach 2: gradient descent7分钟
Comparing the approaches1分钟
Influence of high leverage points: exploring the data4分钟
Influence of high leverage points: removing Center City7分钟
Influence of high leverage points: removing high-end towns3分钟
Asymmetric cost functions3分钟
A brief recap1分钟
5 个阅读材料
Slides presented in this module10分钟
Optional reading: worked-out example for closed-form solution10分钟
Optional reading: worked-out example for gradient descent10分钟
Download notebooks to follow along10分钟
Reading: Fitting a simple linear regression model on housing data10分钟
2 个练习
Simple Linear Regression14分钟
Fitting a simple linear regression model on housing data8分钟
2
完成时间为 3 小时

Multiple Regression

19 个视频 (总计 87 分钟), 5 个阅读材料, 3 个测验
19 个视频
Polynomial regression3分钟
Modeling seasonality8分钟
Where we see seasonality3分钟
Regression with general features of 1 input2分钟
Motivating the use of multiple inputs4分钟
Defining notation3分钟
Regression with features of multiple inputs3分钟
Interpreting the multiple regression fit7分钟
Rewriting the single observation model in vector notation6分钟
Rewriting the model for all observations in matrix notation4分钟
Computing the cost of a D-dimensional curve9分钟
Computing the gradient of RSS3分钟
Approach 1: closed-form solution3分钟
Discussing the closed-form solution4分钟
Approach 2: gradient descent2分钟
Feature-by-feature update9分钟
Algorithmic summary of gradient descent approach4分钟
A brief recap1分钟
5 个阅读材料
Slides presented in this module10分钟
Optional reading: review of matrix algebra10分钟
Reading: Exploring different multiple regression models for house price prediction10分钟
Numpy tutorial10分钟
Reading: Implementing gradient descent for multiple regression10分钟
3 个练习
Multiple Regression18分钟
Exploring different multiple regression models for house price prediction16分钟
Implementing gradient descent for multiple regression10分钟
3
完成时间为 2 小时

Assessing Performance

14 个视频 (总计 93 分钟), 2 个阅读材料, 2 个测验
14 个视频
What do we mean by "loss"?4分钟
Training error: assessing loss on the training set7分钟
Generalization error: what we really want8分钟
Test error: what we can actually compute4分钟
Defining overfitting2分钟
Training/test split1分钟
Irreducible error and bias6分钟
Variance and the bias-variance tradeoff6分钟
Error vs. amount of data6分钟
Formally defining the 3 sources of error14分钟
Formally deriving why 3 sources of error20分钟
Training/validation/test split for model selection, fitting, and assessment7分钟
A brief recap1分钟
2 个阅读材料
Slides presented in this module10分钟
Reading: Exploring the bias-variance tradeoff10分钟
2 个练习
Assessing Performance26分钟
Exploring the bias-variance tradeoff8分钟
4
完成时间为 3 小时

Ridge Regression

16 个视频 (总计 85 分钟), 5 个阅读材料, 3 个测验
16 个视频
Overfitting demo7分钟
Overfitting for more general multiple regression models3分钟
Balancing fit and magnitude of coefficients7分钟
The resulting ridge objective and its extreme solutions5分钟
How ridge regression balances bias and variance1分钟
Ridge regression demo9分钟
The ridge coefficient path4分钟
Computing the gradient of the ridge objective5分钟
Approach 1: closed-form solution6分钟
Discussing the closed-form solution5分钟
Approach 2: gradient descent9分钟
Selecting tuning parameters via cross validation3分钟
K-fold cross validation5分钟
How to handle the intercept6分钟
A brief recap1分钟
5 个阅读材料
Slides presented in this module10分钟
Download the notebook and follow along10分钟
Download the notebook and follow along10分钟
Reading: Observing effects of L2 penalty in polynomial regression10分钟
Reading: Implementing ridge regression via gradient descent10分钟
3 个练习
Ridge Regression18分钟
Observing effects of L2 penalty in polynomial regression14分钟
Implementing ridge regression via gradient descent16分钟
4.8
827 个审阅Chevron Right

45%

完成这些课程后已开始新的职业生涯

43%

通过此课程获得实实在在的工作福利

18%

加薪或升职

来自Machine Learning: Regression的热门评论

创建者 PDMar 17th 2016

I really enjoyed all the concepts and implementations I did along this course....except during the Lasso module. I found this module harder than the others but very interesting as well. Great course!

创建者 CMJan 27th 2016

I really like the top-down approach of this specialization. The iPython code assignments are very well structured. They are presented in a step-by-step manner while still being challenging and fun!

讲师

Avatar

Emily Fox

Amazon Professor of Machine Learning
Statistics
Avatar

Carlos Guestrin

Amazon Professor of Machine Learning
Computer Science and Engineering

关于 华盛顿大学

Founded in 1861, the University of Washington is one of the oldest state-supported institutions of higher education on the West Coast and is one of the preeminent research universities in the world....

关于 机器学习 专项课程

This Specialization from leading researchers at the University of Washington introduces you to the exciting, high-demand field of Machine Learning. Through a series of practical case studies, you will gain applied experience in major areas of Machine Learning including Prediction, Classification, Clustering, and Information Retrieval. You will learn to analyze large and complex datasets, create systems that adapt and improve over time, and build intelligent applications that can make predictions from data....
机器学习

常见问题

  • 注册以便获得证书后,您将有权访问所有视频、测验和编程作业(如果适用)。只有在您的班次开课之后,才可以提交和审阅同学互评作业。如果您选择在不购买的情况下浏览课程,可能无法访问某些作业。

  • 您注册课程后,将有权访问专项课程中的所有课程,并且会在完成课程后获得证书。您的电子课程证书将添加到您的成就页中,您可以通过该页打印您的课程证书或将其添加到您的领英档案中。如果您只想阅读和查看课程内容,可以免费旁听课程。

还有其他问题吗?请访问 学生帮助中心