This course trains you in the skills needed to program specific orientation and achieve precise aiming goals for spacecraft moving through three dimensional space. First, we cover stability definitions of nonlinear dynamical systems, covering the difference between local and global stability. We then analyze and apply Lyapunov's Direct Method to prove these stability properties, and develop a nonlinear 3-axis attitude pointing control law using Lyapunov theory. Finally, we look at alternate feedback control laws and closed loop dynamics.
提供方
课程信息
提供方

科罗拉多大学波德分校
CU-Boulder is a dynamic community of scholars and learners on one of the most spectacular college campuses in the country. As one of 34 U.S. public institutions in the prestigious Association of American Universities (AAU), we have a proud tradition of academic excellence, with five Nobel laureates and more than 50 members of prestigious academic academies.
教学大纲 - 您将从这门课程中学到什么
Nonlinear Stability Definitions
Discusses stability definitions of nonlinear dynamical systems, and compares to the classical linear stability definitions. The difference between local and global stability is covered.
Overview of Lyapunov Stability Theory
Lyapunov's direct method is employed to prove these stability properties for a nonlinear system and prove stability and convergence. The possible function definiteness is introduced which forms the building block of Lyapunov's direct method. Convenient prototype Lyapunov candidate functions are presented for rate- and state-error measures.
Attitude Control of States and Rates
A nonlinear 3-axis attitude pointing control law is developed and its stability is analyized using Lyapunov theory. Convergence is discussed considering both modeled and unmodeled torques. The control gain selection is presented using the convenient linearized closed loop dynamics.
Alternate Attitude Control Formulations
Alternate feedback control laws are formulated where actuator saturation is considered. Further, a control law is presented that perfectly linearizes the closed loop dynamics in terms of quaternions and MRPs. Finally, the 3-axis Lyapunov attitude control is developed for a spacecraft with a cluster of N reaction wheel control devices.
审阅
来自CONTROL OF NONLINEAR SPACECRAFT ATTITUDE MOTION的热门评论
Excellent teaching from Professor Schaub ! Course has been very well organised and touches on the important aspects of nonlinear control. Looking forward to more courses from you. Thank you !
Excellent course but it could have been smoother if the instructor kept himself in loop with people doing the course
The whole course is really good. The instructor is awesome at teaching concepts. I got to learn a lot of new things.
Thanks Prof Schaub, that was a wonder of a course! Learned so much and still want to proceed :)
关于 Spacecraft Dynamics and Control 专项课程
Spacecraft Dynamics and Control covers three core topic areas: the description of the motion and rates of motion of rigid bodies (Kinematics), developing the equations of motion that prediction the movement of rigid bodies taking into account mass, torque, and inertia (Kinetics), and finally non-linear controls to program specific orientations and achieve precise aiming goals in three-dimensional space (Control). The specialization invites learners to develop competency in these three areas through targeted content delivery, continuous concept reinforcement, and project applications.

常见问题
我什么时候能够访问课程视频和作业?
我订阅此专项课程后会得到什么?
Is financial aid available?
完成课程后,我会获得大学学分吗?
还有其他问题吗?请访问 学生帮助中心。