课程信息
4.1
280 个评分
50 个审阅
专项课程

第 2 门课程(共 4 门)

100% 在线

100% 在线

立即开始,按照自己的计划学习。
可灵活调整截止日期

可灵活调整截止日期

根据您的日程表重置截止日期。
完成时间(小时)

完成时间大约为13 小时

建议:4 weeks of study, 6-8 hours/week...
可选语言

英语(English)

字幕:英语(English), 韩语

您将获得的技能

Random ForestPredictive AnalyticsMachine LearningR Programming
专项课程

第 2 门课程(共 4 门)

100% 在线

100% 在线

立即开始,按照自己的计划学习。
可灵活调整截止日期

可灵活调整截止日期

根据您的日程表重置截止日期。
完成时间(小时)

完成时间大约为13 小时

建议:4 weeks of study, 6-8 hours/week...
可选语言

英语(English)

字幕:英语(English), 韩语

教学大纲 - 您将从这门课程中学到什么

1
完成时间(小时)
完成时间为 2 小时

Practical Statistical Inference

Learn the basics of statistical inference, comparing classical methods with resampling methods that allow you to use a simple program to make a rigorous statistical argument. Motivate your study with current topics at the foundations of science: publication bias and reproducibility....
Reading
28 个视频 (总计 121 分钟)
Video28 个视频
Hypothesis Testing5分钟
Significance Tests and P-Values3分钟
Example: Difference of Means4分钟
Deriving the Sampling Distribution6分钟
Shuffle Test for Significance4分钟
Comparing Classical and Resampling Methods3分钟
Bootstrap6分钟
Resampling Caveats6分钟
Outliers and Rank Transformation3分钟
Example: Chi-Squared Test3分钟
Bad Science Revisited: Publication Bias4分钟
Effect Size4分钟
Meta-analysis5分钟
Fraud and Benford's Law4分钟
Intuition for Benford's Law2分钟
Benford's Law Explained Visually3分钟
Multiple Hypothesis Testing: Bonferroni and Sidak Corrections3分钟
Multiple Hypothesis Testing: False Discovery Rate4分钟
Multiple Hypothesis Testing: Benjamini-Hochberg Procedure3分钟
Big Data and Spurious Correlations4分钟
Spurious Correlations: Stock Price Example3分钟
How is Big Data Different?3分钟
Bayesian vs. Frequentist4分钟
Motivation for Bayesian Approaches3分钟
Bayes' Theorem2分钟
Applying Bayes' Theorem4分钟
Naive Bayes: Spam Filtering4分钟
2
完成时间(小时)
完成时间为 2 小时

Supervised Learning

Follow a tour through the important methods, algorithms, and techniques in machine learning. You will learn how these methods build upon each other and can be combined into practical algorithms that perform well on a variety of tasks. Learn how to evaluate machine learning methods and the pitfalls to avoid....
Reading
26 个视频 (总计 111 分钟), 1 个阅读材料, 1 个测验
Video26 个视频
Simple Examples3分钟
Structure of a Machine Learning Problem5分钟
Classification with Simple Rules5分钟
Learning Rules4分钟
Rules: Sequential Covering3分钟
Rules Recap2分钟
From Rules to Trees2分钟
Entropy4分钟
Measuring Entropy4分钟
Using Information Gain to Build Trees6分钟
Building Trees: ID3 Algorithm2分钟
Building Trees: C.45 Algorithm4分钟
Rules and Trees Recap3分钟
Overfitting7分钟
Evaluation: Leave One Out Cross Validation5分钟
Evaluation: Accuracy and ROC Curves5分钟
Bootstrap Revisited4分钟
Ensembles, Bagging, Boosting4分钟
Boosting Walkthrough5分钟
Random Forests3分钟
Random Forests: Variable Importance5分钟
Summary: Trees and Forests2分钟
Nearest Neighbor4分钟
Nearest Neighbor: Similarity Functions4分钟
Nearest Neighbor: Curse of Dimensionality3分钟
Reading1 个阅读材料
R Assignment: Classification of Ocean Microbes10分钟
Quiz1 个练习
R Assignment: Classification of Ocean Microbes28分钟
3
完成时间(小时)
完成时间为 1 小时

Optimization

You will learn how to optimize a cost function using gradient descent, including popular variants that use randomization and parallelization to improve performance. You will gain an intuition for popular methods used in practice and see how similar they are fundamentally. ...
Reading
11 个视频 (总计 41 分钟)
Video11 个视频
Gradient Descent Visually4分钟
Gradient Descent in Detail2分钟
Gradient Descent: Questions to Consider3分钟
Intuition for Logistic Regression4分钟
Intuition for Support Vector Machines3分钟
Support Vector Machine Example3分钟
Intuition for Regularization3分钟
Intuition for LASSO and Ridge Regression3分钟
Stochastic and Batched Gradient Descent5分钟
Parallelizing Gradient Descent3分钟
4
完成时间(小时)
完成时间为 2 小时

Unsupervised Learning

A brief tour of selected unsupervised learning methods and an opportunity to apply techniques in practice on a real world problem....
Reading
4 个视频 (总计 21 分钟), 1 个测验
Video4 个视频
K-means5分钟
DBSCAN4分钟
DBSCAN Variable Density and Parallel Algorithms4分钟
4.1
50 个审阅Chevron Right
职业方向

33%

完成这些课程后已开始新的职业生涯
工作福利

25%

通过此课程获得实实在在的工作福利

热门审阅

创建者 SPDec 23rd 2016

Fantastic course! Excellent conceptual teaching for people who already know the subject but need some more clarity on how to approach statistical tests and machine learning.

创建者 KPFeb 8th 2016

I enjoy this course. The delivery and the course topics were very interesting. I learnt a lot and peer reviewing other people assignments is a great learning opportunity .

讲师

Avatar

Bill Howe

Director of Research
Scalable Data Analytics

关于 University of Washington

Founded in 1861, the University of Washington is one of the oldest state-supported institutions of higher education on the West Coast and is one of the preeminent research universities in the world....

关于 Data Science at Scale 专项课程

Learn scalable data management, evaluate big data technologies, and design effective visualizations. This Specialization covers intermediate topics in data science. You will gain hands-on experience with scalable SQL and NoSQL data management solutions, data mining algorithms, and practical statistical and machine learning concepts. You will also learn to visualize data and communicate results, and you’ll explore legal and ethical issues that arise in working with big data. In the final Capstone Project, developed in partnership with the digital internship platform Coursolve, you’ll apply your new skills to a real-world data science project....
Data Science at Scale

常见问题

  • 注册以便获得证书后,您将有权访问所有视频、测验和编程作业(如果适用)。只有在您的班次开课之后,才可以提交和审阅同学互评作业。如果您选择在不购买的情况下浏览课程,可能无法访问某些作业。

  • 您注册课程后,将有权访问专项课程中的所有课程,并且会在完成课程后获得证书。您的电子课程证书将添加到您的成就页中,您可以通过该页打印您的课程证书或将其添加到您的领英档案中。如果您只想阅读和查看课程内容,可以免费旁听课程。

还有其他问题吗?请访问 学生帮助中心