People analytics is a data-driven approach to managing people at work. For the first time in history, business leaders can make decisions about their people based on deep analysis of data rather than the traditional methods of personal relationships, decision making based on experience, and risk avoidance. In this brand new course, three of Wharton’s top professors, all pioneers in the field of people analytics, will explore the state-of-the-art techniques used to recruit and retain great people, and demonstrate how these techniques are used at cutting-edge companies. They’ll explain how data and sophisticated analysis is brought to bear on people-related issues, such as recruiting, performance evaluation, leadership, hiring and promotion, job design, compensation, and collaboration. This course is an introduction to the theory of people analytics, and is not intended to prepare learners to perform complex talent management data analysis. By the end of this course, you’ll understand how and when hard data is used to make soft-skill decisions about hiring and talent development, so that you can position yourself as a strategic partner in your company’s talent management decisions. This course is intended to introduced you to Organizations flourish when the people who work in them flourish. Analytics can help make both happen. This course in People Analytics is designed to help you flourish in your career, too.
从本节课中
Introduction to People Analytics, and Performance Evaluation
In this module, you'll meet Professors Massey, Bidwell, and Haas, cover the structore and scope of the course, and dive into the first topic: Performance Evaluation. Performance evaluation plays an influential role in our work lives, whether it is used to reward or punish and/or to gather feedback. Yet its fundamental challenge is that the measures we used to evaluate performance are imperfect: we can't infer how hard or smart an employee is working based solely on outcomes. In this module, you’ll learn the four key issues in measuring performance: regression to the mean, sample size, signal independence, and process vs. outcome, and see them at work in current companies, including an extended example from the NFL. By the end of this module, you’ll understand how to separate skill from luck and learn to read noisy performance measures, so that you can go into your next performance evaluation sensitive to the role of chance, knowing your environment, and aware of the four most common biases, so that you can make more informed data-driven decisions about your company's most valuable asset: its employees.