# 数学在机器学习领域的应用 专项课程

数学在机器学习领域的应用. Learn about the prerequisite mathematics for applications in data science and machine learning

**61,203**人已注册

提供方

### 您将学到的内容有

Implement mathematical concepts using real-world data

Derive PCA from a projection perspective

Understand how orthogonal projections work

Master PCA

### 您将获得的技能

## 关于此 专项课程

## 应用的学习项目

Through the assignments of this specialisation you will use the skills you have learned to produce mini-projects with Python on interactive notebooks, an easy to learn tool which will help you apply the knowledge to real world problems. For example, using linear algebra in order to calculate the page rank of a small simulated internet, applying multivariate calculus in order to train your own neural network, performing a non-linear least squares regression to fit a model to a data set, and using principal component analysis to determine the features of the MNIST digits data set.

#### 可分享的证书

#### 100% 在线课程

#### 灵活的计划

#### 初级

无需相关领域的预备知识无需相关经验。

#### 完成时间大约为4 个月

#### 英语（English）

#### 可分享的证书

#### 100% 在线课程

#### 灵活的计划

#### 初级

无需相关领域的预备知识无需相关经验。

#### 完成时间大约为4 个月

#### 英语（English）

### 此专项课程包含 3 门课程

### Mathematics for Machine Learning: Linear Algebra

In this course on Linear Algebra we look at what linear algebra is and how it relates to vectors and matrices. Then we look through what vectors and matrices are and how to work with them, including the knotty problem of eigenvalues and eigenvectors, and how to use these to solve problems. Finally we look at how to use these to do fun things with datasets - like how to rotate images of faces and how to extract eigenvectors to look at how the Pagerank algorithm works.

### Mathematics for Machine Learning: Multivariate Calculus

This course offers a brief introduction to the multivariate calculus required to build many common machine learning techniques. We start at the very beginning with a refresher on the “rise over run” formulation of a slope, before converting this to the formal definition of the gradient of a function. We then start to build up a set of tools for making calculus easier and faster. Next, we learn how to calculate vectors that point up hill on multidimensional surfaces and even put this into action using an interactive game. We take a look at how we can use calculus to build approximations to functions, as well as helping us to quantify how accurate we should expect those approximations to be. We also spend some time talking about where calculus comes up in the training of neural networks, before finally showing you how it is applied in linear regression models. This course is intended to offer an intuitive understanding of calculus, as well as the language necessary to look concepts up yourselves when you get stuck. Hopefully, without going into too much detail, you’ll still come away with the confidence to dive into some more focused machine learning courses in future.

### Mathematics for Machine Learning: PCA

This intermediate-level course introduces the mathematical foundations to derive Principal Component Analysis (PCA), a fundamental dimensionality reduction technique. We'll cover some basic statistics of data sets, such as mean values and variances, we'll compute distances and angles between vectors using inner products and derive orthogonal projections of data onto lower-dimensional subspaces. Using all these tools, we'll then derive PCA as a method that minimizes the average squared reconstruction error between data points and their reconstruction.

### 提供方

#### 伦敦帝国学院

Imperial College London is a world top ten university with an international reputation for excellence in science, engineering, medicine and business. located in the heart of London. Imperial is a multidisciplinary space for education, research, translation and commercialisation, harnessing science and innovation to tackle global challenges.

## 常见问题

完成专项课程后我会获得大学学分吗？

此专项课程不提供大学学分，但部分大学可能会选择接受专项课程证书作为学分。查看您的合作院校，了解详情。Coursera 上的在线学位和 Mastertrack™ 证书提供获得大学学分的机会。

Can I just enroll in a single course?

如果订阅，您可以获得 7 天免费试听，在此期间，您可以取消课程，无需支付任何罚金。在此之后，我们不会退款，但您可以随时取消订阅。请阅读我们完整的退款政策。

我可以只注册一门课程吗？

可以！点击您感兴趣的课程卡开始注册即可。注册并完成课程后，您可以获得可共享的证书，或者您也可以旁听该课程免费查看课程资料。如果您订阅的课程是某专项课程的一部分，系统会自动为您订阅完整的专项课程。访问您的学生面板，跟踪您的进度。

Can I take the course for free?

是的，Coursera 可以为无法承担费用的学生提供助学金。通过点击左侧“注册”按钮下的“助学金”链接可以申请助学金。您可以根据屏幕提示完成申请，申请获批后会收到通知。您需要针对专项课程中的每一门课程完成上述步骤，包括毕业项目。了解更多。

我可以免费学习课程吗？

完成注册课程后，您可以学习专项课程中的所有课程，并且完成作业后可以获得证书。如果您只想阅读和查看课程内容，可以免费旁听该课程。如果您无法承担课程费用，可以申请助学金。

此课程是 100% 在线学习吗？是否需要现场参加课程？

此课程完全在线学习，无需到教室现场上课。您可以通过网络或移动设备随时随地访问课程视频、阅读材料和作业。

完成专项课程需要多长时间？

High school maths knowledge is required. Basic knowledge of Python can come in handy, but it is not necessary for courses 1 and 2. For course 3 (intermediate difficulty) you will need basic Python and numpy knowledge to get through the assignments.

Do I need to take the courses in a specific order?

We recommend taking the courses in the order in which they are displayed on the main page of the Specialization.

Will I earn university credit for completing the Specialization?

This is a non-credit Specialization.

还有其他问题吗？请访问 学生帮助中心。