课程信息

270,796 次近期查看

学生职业成果

42%

完成这些课程后已开始新的职业生涯

32%

通过此课程获得实实在在的工作福利
可分享的证书
完成后获得证书
100% 在线
立即开始,按照自己的计划学习。
可灵活调整截止日期
根据您的日程表重置截止日期。
初级
完成时间大约为17 小时
英语(English)
字幕:英语(English)

您将获得的技能

Simple AlgorithmPython ProgrammingProblem SolvingComputation

学生职业成果

42%

完成这些课程后已开始新的职业生涯

32%

通过此课程获得实实在在的工作福利
可分享的证书
完成后获得证书
100% 在线
立即开始,按照自己的计划学习。
可灵活调整截止日期
根据您的日程表重置截止日期。
初级
完成时间大约为17 小时
英语(English)
字幕:英语(English)

提供方

宾夕法尼亚大学 徽标

宾夕法尼亚大学

教学大纲 - 您将从这门课程中学到什么

内容评分Thumbs Up84%(2,440 个评分)Info
1

1

完成时间为 3 小时

Pillars of Computational Thinking

完成时间为 3 小时
6 个视频 (总计 44 分钟)
6 个视频
1.2 Decomposition6分钟
1.3 Pattern Recognition5分钟
1.4 Data Representation and Abstraction7分钟
1.5 Algorithms8分钟
1.6 Case Studies11分钟
4 个练习
1.2 Decomposition10分钟
1.3 Pattern Recognition10分钟
1.4 Data Representation and Abstraction15分钟
1.5 Algorithms15分钟
2

2

完成时间为 4 小时

Expressing and Analyzing Algorithms

完成时间为 4 小时
7 个视频 (总计 69 分钟)
7 个视频
2.2 Linear Search5分钟
2.3 Algorithmic Complexity8分钟
2.4 Binary Search11分钟
2.5 Brute Force Algorithms13分钟
2.6 Greedy Algorithms9分钟
2.7 Case Studies12分钟
6 个练习
2.1 Finding the Largest Value10分钟
2.2 Linear Search10分钟
2.3 Algorithmic Complexity10分钟
2.4 Binary Search10分钟
2.5 Brute Force Algorithms15分钟
2.6 Greedy Algorithms10分钟
3

3

完成时间为 4 小时

Fundamental Operations of a Modern Computer

完成时间为 4 小时
6 个视频 (总计 46 分钟)
6 个视频
3.2 Intro to the von Neumann Architecture8分钟
3.3 von Neumann Architecture Data6分钟
3.4 von Neumann Architecture Control Flow5分钟
3.5 Expressing Algorithms in Pseudocode8分钟
3.6 Case Studies10分钟
5 个练习
3.1 A History of the Computer10分钟
3.2 Intro to the von Neumann Architecture10分钟
3.3 von Neumann Architecture Data10分钟
3.4 von Neumann Architecture Control Flow10分钟
3.5 Expressing Algorithms in Pseudocode10分钟
4

4

完成时间为 7 小时

Applied Computational Thinking Using Python

完成时间为 7 小时
9 个视频 (总计 91 分钟), 12 个阅读材料, 12 个测验
9 个视频
4.2 Variables13分钟
4.3 Conditional Statements8分钟
4.4 Lists7分钟
4.5 Iteration14分钟
4.6 Functions10分钟
4.7 Classes and Objects9分钟
4.8 Case Studies11分钟
4.9 Course Conclusion8分钟
12 个阅读材料
Programming on the Coursera Platform10分钟
Python Playground
Variables Programming Activity20分钟
Solution to Variables Programming Activity10分钟
Conditionals Programming Activity20分钟
Solution to Conditionals Programming Activity10分钟
Solution to Lists Programming Assignment5分钟
Solution to Loops Programming Assignment10分钟
Solution to Functions Programming Assignment10分钟
Solution to Challenge Programming Assignment10分钟
Solution to Classes and Objects Programming Assignment10分钟
Solution to Project Part 410分钟
12 个练习
4.2 Variables10分钟
4.3 Conditional Statements5分钟
4.4 Lists10分钟
Lists Programming Assignment15分钟
4.5 Iteration10分钟
Loops Programming Assignment30分钟
4.6 Functions10分钟
Functions Programming Assignment20分钟
(Optional) Challenge Programming Assignment20分钟
4.7 Classes and Objects10分钟
Classes and Objects Programming Assignment20分钟
Project Part 4: Implementing the Solution in Python25分钟

审阅

来自COMPUTATIONAL THINKING FOR PROBLEM SOLVING的热门评论

查看所有评论

常见问题

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.

    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.

  • When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

  • You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.

  • Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You’ll be prompted to complete an application and will be notified if you are approved. Learn more.

  • No, definitely not! This course is intended for anyone who has an interest in approaching problems more systematically, developing more efficient solutions, and understanding how computers can be used in the problem solving process. No prior computer science or programming experience is required.

  • Some parts of the course assume familiarity with basic algebra, trigonometry, mathematical functions, exponents, and logarithms. If you don’t remember those concepts or never learned them, don’t worry! As long as you’re comfortable with multiplication, you should still be able to follow along. For everything else, we’ll provide links to references that you can use as a refresher or as supplemental material.

  • This course will help you discover whether you have an aptitude for computational thinking and give you some beginner-level experience with online learning. In this course you will learn several introductory concepts from MCIT instructors produced by the same team that brought the MCIT degree online.

    If you have a bachelor's degree and are interested in learning more about computational thinking, we encourage you to apply to MCIT On-campus (http://www.cis.upenn.edu/prospective-students/graduate/mcit.php) or MCIT Online (https://onlinelearning.seas.upenn.edu/mcit/). Please mention that you have completed this course in the application.

  • Use these links to learn more about MCIT:

    MCIT On-campus: http://www.cis.upenn.edu/prospective-students/graduate/mcit.php

    MCIT Online: https://onlinelearning.seas.upenn.edu/mcit/

还有其他问题吗?请访问 学生帮助中心