The Hong Kong University of Science and Technology

课程信息

This is a course about the Fibonacci numbers, the golden ratio, and their intimate relationship. In this course, we learn the origin of the Fibonacci numbers and the golden ratio, and derive a formula to compute any Fibonacci number from powers of the golden ratio. We learn how to add a series of Fibonacci numbers and their squares, and unveil the mathematics behind a famous paradox called the Fibonacci bamboozlement. We construct a beautiful golden spiral and an even more beautiful Fibonacci spiral, and we learn why the Fibonacci numbers may appear unexpectedly in nature.
The course lecture notes, problems, and professor's suggested solutions can be downloaded for free from
http://bookboon.com/en/fibonacci-numbers-and-the-golden-ratio-ebook
Course Overview video: https://youtu.be/GRthNC0_mrU

Section

By the end of this week, you will be able to: 1) describe the origin of the Fibonacci sequence; 2) describe the origin of the golden ratio; 3) find the relationship between the Fibonacci sequence and the golden ratio; 4) derive Binet’s formula. ...

7 videos (Total 55 min), 9 readings, 4 quizzes

The Fibonacci Sequence8m

The Fibonacci Sequence Redux7m

The Golden Ratio8m

Fibonacci Numbers and the Golden Ratio6m

Binet's Formula10m

Mathematical Induction7m

Welcome and Course Information10m

Get to Know Your Classmates10m

Fibonacci Numbers with Negative Indices10m

The Lucas Numbers10m

Neighbour Swapping10m

Some Algebra Practice10m

Linearization of Powers of the Golden Ratio10m

Another Derivation of Binet's formula10m

Binet's Formula for the Lucas Numbers10m

Diagnostic Quiz10m

The Fibonacci Numbers6m

The Golden Ratio6m

Week 120m

Section

By the end of this week, you will be able to: 1) identify the Fibonacci Q-matrix and derive Cassini’s identity; 2) explain the Fibonacci bamboozlement; 3) derive and prove the sum of the first n Fibonacci numbers, and the sum of the squares of the first n Fibonacci numbers; 4) construct a golden rectangle and 5) draw a figure with spiralling squares. ...

9 videos (Total 65 min), 10 readings, 3 quizzes

Cassini's Identity8m

The Fibonacci Bamboozlement6m

Sum of Fibonacci Numbers8m

Sum of Fibonacci Numbers Squared7m

The Golden Rectangle5m

Spiraling Squares3m

Matrix Algebra: Addition and Multiplication5m

Matrix Algebra: Determinants7m

Do You Know Matrices?10m

The Fibonacci Addition Formula10m

The Fibonacci Double Index Formula10m

Do You Know Determinants?10m

Proof of Cassini's Identity10m

Catalan's Identity10m

Sum of Lucas Numbers10m

Sums of Even and Odd Fibonacci Numbers10m

Sum of Lucas Numbers Squared10m

Area of the Spiraling Squares10m

The Fibonacci Bamboozlement6m

Fibonacci Sums6m

Week 220m

Section

By the end of this week, you will be able to: 1) describe the golden spiral and its relationship to the spiralling squares; 2) construct an inner golden rectangle; 3) explain continued fractions and be able to compute them; 4) explain why the golden ratio is called the most irrational of the irrational numbers; 5) understand why the golden ratio and the Fibonacci numbers may show up unexpectedly in nature. ...

8 videos (Total 61 min), 8 readings, 3 quizzes

An Inner Golden Rectangle5m

The Fibonacci Spiral6m

Fibonacci Numbers in Nature4m

Continued Fractions15m

The Golden Angle7m

A Simple Model for the Growth of a Sunflower8m

Concluding remarks4m

The Eye of God10m

Area of the Inner Golden Rectangle10m

Continued Fractions for Square Roots10m

Continued Fraction for e10m

The Golden Ratio and the Ratio of Fibonacci Numbers10m

The Golden Angle and the Ratio of Fibonacci Numbers10m

Please Rate this Course10m

Acknowledgments10m

Spirals6m

Fibonacci Numbers in Nature6m

Week 320m

4.8

By GM•Mar 16th 2017

Finally I studied the Fibonacci sequence and the golden spiral. I used to say: one day I will.\n\nVery interesting course and made simple by the teacher in spite of the challenging topics

By BS•Aug 30th 2017

Very well designed. It was a lot of fun taking this course. It's the kind of course that can get you excited about higher mathematics. Sincere thanks to Prof. Chasnov and HKUST.

HKUST - A dynamic, international research university, in relentless pursuit of excellence, leading the advance of science and technology, and educating the new generation of front-runners for Asia and the world....

When will I have access to the lectures and assignments?

Once you enroll for a Certificate, you’ll have access to all videos, quizzes, and programming assignments (if applicable). Peer review assignments can only be submitted and reviewed once your session has begun. If you choose to explore the course without purchasing, you may not be able to access certain assignments.

What will I get if I pay for this course?

If you pay for this course, you will have access to all of the features and content you need to earn a Course Certificate. If you complete the course successfully, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. Note that the Course Certificate does not represent official academic credit from the partner institution offering the course.

What is the refund policy?

Is financial aid available?

Yes! Coursera provides financial aid to learners who would like to complete a course but cannot afford the course fee. To apply for aid, select "Learn more and apply" in the Financial Aid section below the "Enroll" button. You'll be prompted to complete a simple application; no other paperwork is required.

More questions? Visit the Learner Help Center