This course covers commonly used statistical inference methods for numerical and categorical data. You will learn how to set up and perform hypothesis tests, interpret p-values, and report the results of your analysis in a way that is interpretable for clients or the public. Using numerous data examples, you will learn to report estimates of quantities in a way that expresses the uncertainty of the quantity of interest. You will be guided through installing and using R and RStudio (free statistical software), and will use this software for lab exercises and a final project. The course introduces practical tools for performing data analysis and explores the fundamental concepts necessary to interpret and report results for both categorical and numerical data
提供方
课程信息
学生职业成果
23%
17%
您将获得的技能
学生职业成果
23%
17%
提供方

杜克大学
Duke University has about 13,000 undergraduate and graduate students and a world-class faculty helping to expand the frontiers of knowledge. The university has a strong commitment to applying knowledge in service to society, both near its North Carolina campus and around the world.
教学大纲 - 您将从这门课程中学到什么
About the Specialization and the Course
This short module introduces basics about Coursera specializations and courses in general, this specialization: Statistics with R, and this course: Inferential Statistics. Please take several minutes to browse them through. Thanks for joining us in this course!
Central Limit Theorem and Confidence Interval
Welcome to Inferential Statistics! In this course we will discuss Foundations for Inference. Check out the learning objectives, start watching the videos, and finally work on the quiz and the labs of this week. In addition to videos that introduce new concepts, you will also see a few videos that walk you through application examples related to the week's topics. In the first week we will introduce Central Limit Theorem (CLT) and confidence interval.
Inference and Significance
Welcome to Week Two! This week we will discuss formal hypothesis testing and relate testing procedures back to estimation via confidence intervals. These topics will be introduced within the context of working with a population mean, however we will also give you a brief peek at what's to come in the next two weeks by discussing how the methods we're learning can be extended to other estimators. We will also discuss crucial considerations like decision errors and statistical vs. practical significance. The labs for this week will illustrate concepts of sampling distributions and confidence levels.
Inference for Comparing Means
Welcome to Week Three of the course! This week we will introduce the t-distribution and comparing means as well as a simulation based method for creating a confidence interval: bootstrapping. If you have questions or discussions, please use this week's forum to ask/discuss with peers.
Inference for Proportions
Welcome to Week Four of our course! In this unit, we’ll discuss inference for categorical data. We use methods introduced this week to answer questions like “What proportion of the American public approves of the job of the Supreme Court is doing?”.
审阅
来自推论统计的热门评论
This course by Professor Çetinkaya-Rundel is awesome because it is taught in a very clear and vivid way. Lab section and forum are so dope that I love them so much! Definitely strong recommendation!!!
Great course. If you put in a little effort, you will come out with a lot of new knowledge. I recommend using the book after you have seen the movies. It gives a deeper picture of how it works. Great!
This course is an excellent overview of inferential statistic tests / hypothesis tests and confidence intervals. The organization and material is quite good, with exercises and applications using R.
Awesome. I loved the way this course is done. I know what Test Statistic to use for what type of data and under which conditions. I am preparing a cheat-sheet that will be shared with all later on.
关于 Statistics with R 专项课程
In this Specialization, you will learn to analyze and visualize data in R and create reproducible data analysis reports, demonstrate a conceptual understanding of the unified nature of statistical inference, perform frequentist and Bayesian statistical inference and modeling to understand natural phenomena and make data-based decisions, communicate statistical results correctly, effectively, and in context without relying on statistical jargon, critique data-based claims and evaluated data-based decisions, and wrangle and visualize data with R packages for data analysis.

常见问题
我什么时候能够访问课程视频和作业?
我订阅此专项课程后会得到什么?
Is financial aid available?
Cost of the Course
Can I just enroll in a single course? I'm not interested in the entire Specialization.
Will I receive a transcript from Duke University for completing this course?
完成课程后,我会获得大学学分吗?
还有其他问题吗?请访问 学生帮助中心。