课程信息
4.8
21,431 个评分
2,442 个审阅
专项课程

Course 3 of 5 in the

100% 在线

100% 在线

立即开始,按照自己的计划学习。
可灵活调整截止日期

可灵活调整截止日期

根据您的日程表重置截止日期。
初级

初级

完成时间(小时)

完成时间大约为7 小时

建议:2 weeks of study, 3-4 hours/week...
可选语言

英语(English)

字幕:英语(English), 中文(繁体), 中文(简体), 韩语, 土耳其语(Turkish)

您将获得的技能

Machine LearningDeep LearningInductive TransferMulti-Task Learning
专项课程

Course 3 of 5 in the

100% 在线

100% 在线

立即开始,按照自己的计划学习。
可灵活调整截止日期

可灵活调整截止日期

根据您的日程表重置截止日期。
初级

初级

完成时间(小时)

完成时间大约为7 小时

建议:2 weeks of study, 3-4 hours/week...
可选语言

英语(English)

字幕:英语(English), 中文(繁体), 中文(简体), 韩语, 土耳其语(Turkish)

教学大纲 - 您将从这门课程中学到什么

1
完成时间(小时)
完成时间为 2 小时

ML Strategy (1)

...
Reading
13 个视频 (总计 100 分钟), 1 个阅读材料, 1 个测验
Video13 个视频
Orthogonalization10分钟
Single number evaluation metric7分钟
Satisficing and Optimizing metric5分钟
Train/dev/test distributions6分钟
Size of the dev and test sets5分钟
When to change dev/test sets and metrics11分钟
Why human-level performance?5分钟
Avoidable bias6分钟
Understanding human-level performance11分钟
Surpassing human-level performance6分钟
Improving your model performance4分钟
Andrej Karpathy interview15分钟
Reading1 个阅读材料
Machine Learning flight simulator2分钟
Quiz1 个练习
Bird recognition in the city of Peacetopia (case study)45分钟
2
完成时间(小时)
完成时间为 3 小时

ML Strategy (2)

...
Reading
11 个视频 (总计 132 分钟), 1 个测验
Video11 个视频
Cleaning up incorrectly labeled data13分钟
Build your first system quickly, then iterate6分钟
Training and testing on different distributions10分钟
Bias and Variance with mismatched data distributions18分钟
Addressing data mismatch10分钟
Transfer learning11分钟
Multi-task learning12分钟
What is end-to-end deep learning?11分钟
Whether to use end-to-end deep learning10分钟
Ruslan Salakhutdinov interview17分钟
Quiz1 个练习
Autonomous driving (case study)45分钟
4.8
2,442 个审阅Chevron Right
职业方向

35%

完成这些课程后已开始新的职业生涯
工作福利

83%

通过此课程获得实实在在的工作福利
职业晋升

14%

加薪或升职

热门审阅

创建者 AMNov 23rd 2017

I learned so many things in this module. I learned that how to do error analysys and different kind of the learning techniques. Thanks Professor Andrew Ng to provide such a valuable and updated stuff.

创建者 NINov 11th 2017

Awesome course as always. The course teaches real world practical aspects of how to get started and navigate in the real world projects. The guidelines are actual learnings from years of experience.

讲师

Avatar

Andrew Ng

CEO/Founder Landing AI; Co-founder, Coursera; Adjunct Professor, Stanford University; formerly Chief Scientist,Baidu and founding lead of Google Brain
Avatar

Head Teaching Assistant - Kian Katanforoosh

Lecturer of Computer Science at Stanford University, deeplearning.ai, Ecole CentraleSupelec
Avatar

Teaching Assistant - Younes Bensouda Mourri

Mathematical & Computational Sciences, Stanford University, deeplearning.ai

关于 deeplearning.ai

deeplearning.ai is Andrew Ng's new venture which amongst others, strives for providing comprehensive AI education beyond borders....

关于 Deep Learning 专项课程

If you want to break into AI, this Specialization will help you do so. Deep Learning is one of the most highly sought after skills in tech. We will help you become good at Deep Learning. In five courses, you will learn the foundations of Deep Learning, understand how to build neural networks, and learn how to lead successful machine learning projects. You will learn about Convolutional networks, RNNs, LSTM, Adam, Dropout, BatchNorm, Xavier/He initialization, and more. You will work on case studies from healthcare, autonomous driving, sign language reading, music generation, and natural language processing. You will master not only the theory, but also see how it is applied in industry. You will practice all these ideas in Python and in TensorFlow, which we will teach. You will also hear from many top leaders in Deep Learning, who will share with you their personal stories and give you career advice. AI is transforming multiple industries. After finishing this specialization, you will likely find creative ways to apply it to your work. We will help you master Deep Learning, understand how to apply it, and build a career in AI....
Deep Learning

常见问题

  • 注册以便获得证书后,您将有权访问所有视频、测验和编程作业(如果适用)。只有在您的班次开课之后,才可以提交和审阅同学互评作业。如果您选择在不购买的情况下浏览课程,可能无法访问某些作业。

  • 您注册课程后,将有权访问专项课程中的所有课程,并且会在完成课程后获得证书。您的电子课程证书将添加到您的成就页中,您可以通过该页打印您的课程证书或将其添加到您的领英档案中。如果您只想阅读和查看课程内容,可以免费旁听课程。

还有其他问题吗?请访问 学生帮助中心