课程信息
54,711 次近期查看

第 2 门课程(共 4 门)

100% 在线

立即开始,按照自己的计划学习。

可灵活调整截止日期

根据您的日程表重置截止日期。

高级

This is an advanced course, intended for learners with a background in mechanical engineering, computer and electrical engineering, or robotics.

完成时间大约为26 小时

建议:4 weeks of study, 5-6 hours per week...

英语(English)

字幕:英语(English)

您将学到的内容有

  • Check

    Understand the key methods for parameter and state estimation used for autonomous driving, such as the method of least-squares

  • Check

    Develop a model for typical vehicle localization sensors, including GPS and IMUs

  • Check

    Apply extended and unscented Kalman Filters to a vehicle state estimation problem

  • Check

    Apply LIDAR scan matching and the Iterative Closest Point algorithm

第 2 门课程(共 4 门)

100% 在线

立即开始,按照自己的计划学习。

可灵活调整截止日期

根据您的日程表重置截止日期。

高级

This is an advanced course, intended for learners with a background in mechanical engineering, computer and electrical engineering, or robotics.

完成时间大约为26 小时

建议:4 weeks of study, 5-6 hours per week...

英语(English)

字幕:英语(English)

教学大纲 - 您将从这门课程中学到什么

1
完成时间为 2 小时

Module 0: Welcome to Course 2: State Estimation and Localization for Self-Driving Cars

9 个视频 (总计 33 分钟), 3 个阅读材料
9 个视频
Meet the Instructor, Steven Waslander5分钟
Meet Diana, Firmware Engineer2分钟
Meet Winston, Software Engineer3分钟
Meet Andy, Autonomous Systems Architect2分钟
Meet Paul Newman, Founder, Oxbotica & Professor at University of Oxford5分钟
The Importance of State Estimation1分钟
3 个阅读材料
Course Prerequisites: Knowledge, Hardware & Software15分钟
How to Use Discussion Forums15分钟
How to Use Supplementary Readings in This Course15分钟
完成时间为 7 小时

Module 1: Least Squares

4 个视频 (总计 33 分钟), 3 个阅读材料, 3 个测验
3 个阅读材料
Lesson 1 Supplementary Reading: The Squared Error Criterion and the Method of Least Squares45分钟
Lesson 2 Supplementary Reading: Recursive Least Squares30分钟
Lesson 3 Supplementary Reading: Least Squares and the Method of Maximum Likelihood30分钟
3 个练习
Lesson 1: Practice Quiz30分钟
Lesson 2: Practice Quiz30分钟
Module 1: Graded Quiz50分钟
2
完成时间为 7 小时

Module 2: State Estimation - Linear and Nonlinear Kalman Filters

6 个视频 (总计 54 分钟), 5 个阅读材料, 1 个测验
6 个视频
Lesson 4: An Improved EKF - The Error State Extended Kalman Filter6分钟
Lesson 5: Limitations of the EKF7分钟
Lesson 6: An Alternative to the EKF - The Unscented Kalman Filter15分钟
5 个阅读材料
Lesson 1 Supplementary Reading: The Linear Kalman Filter45分钟
Lesson 2 Supplementary Reading: The Kalman Filter - The Bias BLUEs10分钟
Lesson 3 Supplementary Reading: Going Nonlinear - The Extended Kalman Filter45分钟
Lesson 4 Supplementary Reading: An Improved EKF - The Error State Kalman FIlter1小时
Lesson 6 Supplementary Reading: An Alternative to the EKF - The Unscented Kalman Filter30分钟
3
完成时间为 2 小时

Module 3: GNSS/INS Sensing for Pose Estimation

4 个视频 (总计 34 分钟), 3 个阅读材料, 1 个测验
3 个阅读材料
Lesson 1 Supplementary Reading: 3D Geometry and Reference Frames10分钟
Lesson 2 Supplementary Reading: The Inertial Measurement Unit (IMU)30分钟
Lesson 3 Supplementary Reading: The Global Navigation Satellite System (GNSS)15分钟
1 个练习
Module 3: Graded Quiz50分钟
4
完成时间为 2 小时

Module 4: LIDAR Sensing

4 个视频 (总计 48 分钟), 3 个阅读材料, 1 个测验
3 个阅读材料
Lesson 1 Supplementary Reading: Light Detection and Ranging Sensors10分钟
Lesson 2 Supplementary Reading: LIDAR Sensor Models and Point Clouds10分钟
Lesson 3 Supplementary Reading: Pose Estimation from LIDAR Data30分钟
1 个练习
Module 4: Graded Quiz30分钟
4.6
24 个审阅Chevron Right

来自State Estimation and Localization for Self-Driving Cars的热门评论

创建者 RLApr 27th 2019

It provides a hand-on experience in implementing part of the localization process...interesting stuff!! Kind of time-consuming so be prepared.

创建者 MIAug 12th 2019

Very interesting course if you want to learn about the different filters used in self driving cars for sensor fusion

讲师

Avatar

Jonathan Kelly

Assistant Professor
Aerospace Studies
Avatar

Steven Waslander

Associate Professor
Aerospace Studies

关于 多伦多大学

Established in 1827, the University of Toronto is one of the world’s leading universities, renowned for its excellence in teaching, research, innovation and entrepreneurship, as well as its impact on economic prosperity and social well-being around the globe. ...

关于 自动驾驶汽车 专项课程

Be at the forefront of the autonomous driving industry. With market researchers predicting a $42-billion market and more than 20 million self-driving cars on the road by 2025, the next big job boom is right around the corner. This Specialization gives you a comprehensive understanding of state-of-the-art engineering practices used in the self-driving car industry. You'll get to interact with real data sets from an autonomous vehicle (AV)―all through hands-on projects using the open source simulator CARLA. Throughout your courses, you’ll hear from industry experts who work at companies like Oxbotica and Zoox as they share insights about autonomous technology and how that is powering job growth within the field. You’ll learn from a highly realistic driving environment that features 3D pedestrian modelling and environmental conditions. When you complete the Specialization successfully, you’ll be able to build your own self-driving software stack and be ready to apply for jobs in the autonomous vehicle industry. It is recommended that you have some background in linear algebra, probability, statistics, calculus, physics, control theory, and Python programming. You will need these specifications in order to effectively run the CARLA simulator: Windows 7 64-bit (or later) or Ubuntu 16.04 (or later), Quad-core Intel or AMD processor (2.5 GHz or faster), NVIDIA GeForce 470 GTX or AMD Radeon 6870 HD series card or higher, 8 GB RAM, and OpenGL 3 or greater (for Linux computers)....
自动驾驶汽车

常见问题

  • 注册以便获得证书后,您将有权访问所有视频、测验和编程作业(如果适用)。只有在您的班次开课之后,才可以提交和审阅同学互评作业。如果您选择在不购买的情况下浏览课程,可能无法访问某些作业。

  • 您注册课程后,将有权访问专项课程中的所有课程,并且会在完成课程后获得证书。您的电子课程证书将添加到您的成就页中,您可以通过该页打印您的课程证书或将其添加到您的领英档案中。如果您只想阅读和查看课程内容,可以免费旁听课程。

还有其他问题吗?请访问 学生帮助中心