课程信息

148,316 次近期查看

学生职业成果

32%

完成这些课程后已开始新的职业生涯

34%

通过此课程获得实实在在的工作福利

可分享的证书

完成后获得证书

100% 在线

立即开始,按照自己的计划学习。

第 4 门课程(共 5 门)

可灵活调整截止日期

根据您的日程表重置截止日期。

中级

完成时间大约为17 小时

建议:9 hours/week...

英语(English)

字幕:英语(English), 韩语

您将获得的技能

Natural Language Toolkit (NLTK)Text MiningPython ProgrammingNatural Language Processing

学生职业成果

32%

完成这些课程后已开始新的职业生涯

34%

通过此课程获得实实在在的工作福利

可分享的证书

完成后获得证书

100% 在线

立即开始,按照自己的计划学习。

第 4 门课程(共 5 门)

可灵活调整截止日期

根据您的日程表重置截止日期。

中级

完成时间大约为17 小时

建议:9 hours/week...

英语(English)

字幕:英语(English), 韩语

提供方

密歇根大学 徽标

密歇根大学

教学大纲 - 您将从这门课程中学到什么

内容评分Thumbs Up92%(4,035 个评分)Info
1

1

完成时间为 8 小时

Module 1: Working with Text in Python

完成时间为 8 小时
5 个视频 (总计 56 分钟), 4 个阅读材料, 3 个测验
5 个视频
Handling Text in Python18分钟
Regular Expressions16分钟
Demonstration: Regex with Pandas and Named Groups5分钟
Internationalization and Issues with Non-ASCII Characters12分钟
4 个阅读材料
Course Syllabus10分钟
Help us learn more about you!10分钟
Notice for Auditing Learners: Assignment Submission10分钟
Resources: Common issues with free text10分钟
2 个练习
Practice Quiz8分钟
Module 1 Quiz12分钟
2

2

完成时间为 6 小时

Module 2: Basic Natural Language Processing

完成时间为 6 小时
3 个视频 (总计 36 分钟)
3 个视频
Basic NLP tasks with NLTK16分钟
Advanced NLP tasks with NLTK16分钟
2 个练习
Practice Quiz4分钟
Module 2 Quiz10分钟
3

3

完成时间为 7 小时

Module 3: Classification of Text

完成时间为 7 小时
7 个视频 (总计 94 分钟)
7 个视频
Identifying Features from Text8分钟
Naive Bayes Classifiers19分钟
Naive Bayes Variations4分钟
Support Vector Machines24分钟
Learning Text Classifiers in Python15分钟
Demonstration: Case Study - Sentiment Analysis9分钟
1 个练习
Module 3 Quiz14分钟
4

4

完成时间为 6 小时

Module 4: Topic Modeling

完成时间为 6 小时
4 个视频 (总计 58 分钟), 2 个阅读材料, 3 个测验
4 个视频
Topic Modeling8分钟
Generative Models and LDA13分钟
Information Extraction18分钟
2 个阅读材料
Additional Resources & Readings10分钟
Post-Course Survey10分钟
2 个练习
Practice Quiz4分钟
Module 4 Quiz10分钟

审阅

来自APPLIED TEXT MINING IN PYTHON的热门评论
查看所有评论

关于 借助 Python 应用数据科学 专项课程

The 5 courses in this University of Michigan specialization introduce learners to data science through the python programming language. This skills-based specialization is intended for learners who have a basic python or programming background, and want to apply statistical, machine learning, information visualization, text analysis, and social network analysis techniques through popular python toolkits such as pandas, matplotlib, scikit-learn, nltk, and networkx to gain insight into their data. Introduction to Data Science in Python (course 1), Applied Plotting, Charting & Data Representation in Python (course 2), and Applied Machine Learning in Python (course 3) should be taken in order and prior to any other course in the specialization. After completing those, courses 4 and 5 can be taken in any order. All 5 are required to earn a certificate....
借助 Python 应用数据科学

常见问题

  • 注册以便获得证书后,您将有权访问所有视频、测验和编程作业(如果适用)。只有在您的班次开课之后,才可以提交和审阅同学互评作业。如果您选择在不购买的情况下浏览课程,可能无法访问某些作业。

  • 您注册课程后,将有权访问专项课程中的所有课程,并且会在完成课程后获得证书。您的电子课程证书将添加到您的成就页中,您可以通过该页打印您的课程证书或将其添加到您的领英档案中。如果您只想阅读和查看课程内容,可以免费旁听课程。

还有其他问题吗?请访问 学生帮助中心