课程信息
4.6
2,583 个评分
484 个审阅
专项课程

第 3 门课程(共 5 门)

100% 在线

100% 在线

立即开始,按照自己的计划学习。
可灵活调整截止日期

可灵活调整截止日期

根据您的日程表重置截止日期。
中级

中级

完成时间(小时)

完成时间大约为23 小时

建议:8 hours/week...
可选语言

英语(English)

字幕:英语(English), 韩语

您将学到的内容有

  • Check

    Build features that meet analysis needs

  • Check

    Create and evaluate data clusters

  • Check

    Describe how machine learning is different than descriptive statistics

  • Check

    Explain different approaches for creating predictive models

您将获得的技能

Python ProgrammingMachine Learning (ML) AlgorithmsMachine LearningScikit-Learn
专项课程

第 3 门课程(共 5 门)

100% 在线

100% 在线

立即开始,按照自己的计划学习。
可灵活调整截止日期

可灵活调整截止日期

根据您的日程表重置截止日期。
中级

中级

完成时间(小时)

完成时间大约为23 小时

建议:8 hours/week...
可选语言

英语(English)

字幕:英语(English), 韩语

教学大纲 - 您将从这门课程中学到什么

1
完成时间(小时)
完成时间为 8 小时

Module 1: Fundamentals of Machine Learning - Intro to SciKit Learn

This module introduces basic machine learning concepts, tasks, and workflow using an example classification problem based on the K-nearest neighbors method, and implemented using the scikit-learn library....
Reading
6 个视频 (总计 71 分钟), 4 个阅读材料, 2 个测验
Video6 个视频
Introduction11分钟
Key Concepts in Machine Learning13分钟
Python Tools for Machine Learning4分钟
An Example Machine Learning Problem12分钟
Examining the Data9分钟
K-Nearest Neighbors Classification20分钟
Reading4 个阅读材料
Course Syllabus10分钟
Help us learn more about you!10分钟
Notice for Auditing Learners: Assignment Submission10分钟
Zachary Lipton: The Foundations of Algorithmic Bias (optional)30分钟
Quiz1 个练习
Module 1 Quiz20分钟
2
完成时间(小时)
完成时间为 9 小时

Module 2: Supervised Machine Learning - Part 1

This module delves into a wider variety of supervised learning methods for both classification and regression, learning about the connection between model complexity and generalization performance, the importance of proper feature scaling, and how to control model complexity by applying techniques like regularization to avoid overfitting. In addition to k-nearest neighbors, this week covers linear regression (least-squares, ridge, lasso, and polynomial regression), logistic regression, support vector machines, the use of cross-validation for model evaluation, and decision trees. ...
Reading
12 个视频 (总计 166 分钟), 2 个阅读材料, 2 个测验
Video12 个视频
Overfitting and Underfitting12分钟
Supervised Learning: Datasets4分钟
K-Nearest Neighbors: Classification and Regression13分钟
Linear Regression: Least-Squares17分钟
Linear Regression: Ridge, Lasso, and Polynomial Regression19分钟
Logistic Regression12分钟
Linear Classifiers: Support Vector Machines13分钟
Multi-Class Classification6分钟
Kernelized Support Vector Machines18分钟
Cross-Validation9分钟
Decision Trees19分钟
Reading2 个阅读材料
A Few Useful Things to Know about Machine Learning10分钟
Ed Yong: Genetic Test for Autism Refuted (optional)10分钟
Quiz1 个练习
Module 2 Quiz22分钟
3
完成时间(小时)
完成时间为 7 小时

Module 3: Evaluation

This module covers evaluation and model selection methods that you can use to help understand and optimize the performance of your machine learning models. ...
Reading
7 个视频 (总计 81 分钟), 1 个阅读材料, 2 个测验
Video7 个视频
Confusion Matrices & Basic Evaluation Metrics12分钟
Classifier Decision Functions7分钟
Precision-recall and ROC curves6分钟
Multi-Class Evaluation13分钟
Regression Evaluation6分钟
Model Selection: Optimizing Classifiers for Different Evaluation Metrics13分钟
Reading1 个阅读材料
Practical Guide to Controlled Experiments on the Web (optional)10分钟
Quiz1 个练习
Module 3 Quiz28分钟
4
完成时间(小时)
完成时间为 10 小时

Module 4: Supervised Machine Learning - Part 2

This module covers more advanced supervised learning methods that include ensembles of trees (random forests, gradient boosted trees), and neural networks (with an optional summary on deep learning). You will also learn about the critical problem of data leakage in machine learning and how to detect and avoid it....
Reading
10 个视频 (总计 94 分钟), 11 个阅读材料, 2 个测验
Video10 个视频
Random Forests11分钟
Gradient Boosted Decision Trees5分钟
Neural Networks19分钟
Deep Learning (Optional)7分钟
Data Leakage11分钟
Introduction4分钟
Dimensionality Reduction and Manifold Learning9分钟
Clustering14分钟
Conclusion2分钟
Reading11 个阅读材料
Neural Networks Made Easy (optional)10分钟
Play with Neural Networks: TensorFlow Playground (optional)10分钟
Deep Learning in a Nutshell: Core Concepts (optional)10分钟
Assisting Pathologists in Detecting Cancer with Deep Learning (optional)10分钟
The Treachery of Leakage (optional)10分钟
Leakage in Data Mining: Formulation, Detection, and Avoidance (optional)10分钟
Data Leakage Example: The ICML 2013 Whale Challenge (optional)10分钟
Rules of Machine Learning: Best Practices for ML Engineering (optional)10分钟
How to Use t-SNE Effectively10分钟
How Machines Make Sense of Big Data: an Introduction to Clustering Algorithms10分钟
Post-course Survey10分钟
Quiz1 个练习
Module 4 Quiz20分钟
4.6
484 个审阅Chevron Right
职业方向

55%

完成这些课程后已开始新的职业生涯
工作福利

45%

通过此课程获得实实在在的工作福利

热门审阅

创建者 OASep 9th 2017

This course is ideally designed for understanding, which tools you can use to do machine learning tasks in python. However, for deep understanding ML algorithms you should take more math based courses

创建者 FLOct 14th 2017

Very well structured course, and very interesting too! Has made me want to pursue a career in machine learning. I originally just wanted to learn to program, without true goal, now I have one thanks!!

讲师

Avatar

Kevyn Collins-Thompson

Associate Professor
School of Information

关于 University of Michigan

The mission of the University of Michigan is to serve the people of Michigan and the world through preeminence in creating, communicating, preserving and applying knowledge, art, and academic values, and in developing leaders and citizens who will challenge the present and enrich the future....

关于 Applied Data Science with Python 专项课程

The 5 courses in this University of Michigan specialization introduce learners to data science through the python programming language. This skills-based specialization is intended for learners who have a basic python or programming background, and want to apply statistical, machine learning, information visualization, text analysis, and social network analysis techniques through popular python toolkits such as pandas, matplotlib, scikit-learn, nltk, and networkx to gain insight into their data. Introduction to Data Science in Python (course 1), Applied Plotting, Charting & Data Representation in Python (course 2), and Applied Machine Learning in Python (course 3) should be taken in order and prior to any other course in the specialization. After completing those, courses 4 and 5 can be taken in any order. All 5 are required to earn a certificate....
Applied Data Science with Python

常见问题

  • 注册以便获得证书后,您将有权访问所有视频、测验和编程作业(如果适用)。只有在您的班次开课之后,才可以提交和审阅同学互评作业。如果您选择在不购买的情况下浏览课程,可能无法访问某些作业。

  • 您注册课程后,将有权访问专项课程中的所有课程,并且会在完成课程后获得证书。您的电子课程证书将添加到您的成就页中,您可以通过该页打印您的课程证书或将其添加到您的领英档案中。如果您只想阅读和查看课程内容,可以免费旁听课程。

还有其他问题吗?请访问 学生帮助中心