课程信息

8,661 次近期查看
可分享的证书
完成后获得证书
100% 在线
立即开始,按照自己的计划学习。
可灵活调整截止日期
根据您的日程表重置截止日期。
中级

A basic knowledge of statistics and research methods is necessary. My previous MOOC 'Improving Your Statistical Inferences' is recommended.

完成时间大约为15 小时
英语(English)
字幕:英语(English)

您将学到的内容有

  • Ask better questions in empirical research

  • Design more informative studies

  • Evaluate the scientific literature taking bias into account

  • Reflect on current norms, and how you can improve your research practices

您将获得的技能

Computational ReproducibilityMeta-AnalysisExperimental DesignStatistical InferencesPhilosophy of Science
可分享的证书
完成后获得证书
100% 在线
立即开始,按照自己的计划学习。
可灵活调整截止日期
根据您的日程表重置截止日期。
中级

A basic knowledge of statistics and research methods is necessary. My previous MOOC 'Improving Your Statistical Inferences' is recommended.

完成时间大约为15 小时
英语(English)
字幕:英语(English)

提供方

埃因霍温科技大学 徽标

埃因霍温科技大学

教学大纲 - 您将从这门课程中学到什么

1

1

完成时间为 2 小时

Module 1: Improving Your Statistical Questions

完成时间为 2 小时
3 个视频 (总计 40 分钟), 2 个阅读材料, 3 个测验
3 个视频
Lecture 1.2: Do You Really Want to Test a Hypothesis?15分钟
Lecture 1.3: Risky Predictions12分钟
2 个阅读材料
Download Course Materials and Course Structure (Must Read)10分钟
Assignment 1.1: Testing Range Predictions30分钟
3 个练习
Consent Form for Use of Data10分钟
Welcome: Short Survey5分钟
Answer Form Assignment 1.1: Testing Range Predictions2分钟
2

2

完成时间为 3 小时

Module 2: Falsifying Predictions

完成时间为 3 小时
3 个视频 (总计 46 分钟), 3 个阅读材料, 3 个测验
3 个视频
Lecture 2.2: Setting the Smallest Effect Size Of Interest14分钟
Lecture 2.3: Falsifying Predictions in Practice15分钟
3 个阅读材料
Assignment 2.1: The Small Telescopes Approach to Setting a SESOI30分钟
Assignment 2.2: Setting the SESOI Based on Resources30分钟
Assignment 2.3: Equivalence Testing30分钟
3 个练习
Answer Form Assignment 2.1: The Small Telescopes Approach to Setting a SESOI8分钟
Answer Form Assignment 2.2: Setting the SESOI Based on Resources10分钟
Answer Form Assignment 2.3: Equivalence Testing18分钟
3

3

完成时间为 3 小时

Module 3: Designing Informative Studies

完成时间为 3 小时
3 个视频 (总计 48 分钟), 2 个阅读材料, 2 个测验
3 个视频
Lecture 3.2: Power Analysis12分钟
Lecture 3.3: Simulation15分钟
2 个阅读材料
Assignment 3.1: Confidence Intervals for Standard Deviations30分钟
Assignment 3.2: Power Analysis for ANOVA Designs1小时
2 个练习
Answer Form Assignment 3.1: Confidence Intervals for Standard Deviations12分钟
Answer Form Assignment 3.2: Power Analysis for ANOVA Designs20分钟
4

4

完成时间为 3 小时

Module 4: Meta-Analysis and Bias Detection

完成时间为 3 小时
3 个视频 (总计 48 分钟), 4 个阅读材料, 3 个测验
3 个视频
Lecture 4.2: Intro to Meta-Analysis17分钟
Lecture 4.3: Bias Detection15分钟
4 个阅读材料
Assignment 4.1: Likelihood of Significant Findings30分钟
Assignment 4.2: Introduction to Meta-Analysis30分钟
Assignment 4.3: Detecting Publication Bias45分钟
Assignment 4.4: Checking Your Stats10分钟
3 个练习
Answer Form Assignment 4.1: Likelihood of Significant Findings14分钟
Answer Form Assignment 4.2: Introduction to Meta-Analysis4分钟
Answer Form Assignment 4.3: Detecting Publication Bias14分钟

审阅

来自IMPROVING YOUR STATISTICAL QUESTIONS的热门评论

查看所有评论

常见问题

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
  • 您购买证书后,将有权访问所有课程材料,包括评分作业。完成课程后,您的电子课程证书将添加到您的成就页中,您可以通过该页打印您的课程证书或将其添加到您的领英档案中。如果您只想阅读和查看课程内容,可以免费旁听课程。

  • 您可在付款后两周内,或者在课程第一个班次开课后(对于已启动的课程)两周内,获得全额退款,以其中较晚者为准。获得课程证书后,您便无法再退款;即使您在两周的退款期内完成了课程,也是如此。请阅读我们完整的退款政策

  • 是的,Coursera 可以向无法承担学费的学生提供助学金。点击左侧‘注册’按钮下的‘助学金’链接即可申请助学金。您可以根据屏幕提示完成申请,申请获批后会收到通知。了解详情

  • The course assumes basic knowledge about statistical inferences (t-tests, ANOVA) and some knowledge of designing research studies. The course is for intermediate level. Coursera offers basic introductions to statistics (which this course is not), and my previous MOOC 'Improving Your Statistical Inferences' might be a better starting point if you lack training in statistics. You do not need knowledge programming in R - we will use it as a fancy calculator by changing code (but not programming).

  • 此课程不提供大学学分,但部分大学可能会选择接受课程证书作为学分。查看您的合作院校,了解详情。Coursera 上的在线学位Mastertrack™ 证书提供获得大学学分的机会。

还有其他问题吗?请访问 学生帮助中心