关于此 专项课程

This Specialization provides a rigorous treatment of spatial motion and the dynamics of rigid bodies, employing representations from modern screw theory and the product of exponentials formula. Students with a freshman-level engineering background will quickly learn to apply these tools to analysis, planning, and control of robot motion. Students' understanding of the mathematics of robotics will be solidified by writing robotics software. Students will test their software on a free state-of-the-art cross-platform robot simulator, allowing each student to have an authentic robot programming experience with industrial robot manipulators and mobile robots without purchasing expensive robot hardware. It is highly recommended that Courses 1-6 of the Specialization are taken in order, since the material builds on itself.

立即开始，按照自己的计划学习。

设置并保持灵活的截止日期。

建议 5 小时/周

字幕：英语（English）...

立即开始，按照自己的计划学习。

设置并保持灵活的截止日期。

建议 5 小时/周

字幕：英语（English）...

Coursera 专项课程是帮助您掌握一门技能的一系列课程。若要开始学习，请直接注册专项课程，或预览专项课程并选择您要首先开始学习的课程。当您订阅专项课程的部分课程时，您将自动订阅整个专项课程。您可以只完成一门课程，您可以随时暂停学习或结束订阅。访问您的学生面板，跟踪您的课程注册情况和进度。

每个专项课程都包括实践项目。您需要成功完成这个（些）项目才能完成专项课程并获得证书。如果专项课程中包括单独的实践项目课程，则需要在开始之前完成其他所有课程。

在结束每门课程并完成实践项目之后，您会获得一个证书，您可以向您的潜在雇主展示该证书并在您的职业社交网络中分享。

4.7

123 个评分

•

31 个审阅

Do you want to know how robots work? Are you interested in robotics as a career? Are you willing to invest the effort to learn fundamental mathematical modeling techniques that are used in all subfields of robotics?
If so, then the "Modern Robotics: Mechanics, Planning, and Control" specialization may be for you. This specialization, consisting of six short courses, is serious preparation for serious students who hope to work in the field of robotics or to undertake advanced study. It is not a sampler.
In Course 1 of the specialization, Foundations of Robot Motion, you will learn fundamental material regarding robot configurations, for both serial robot mechanisms and robots with closed chains. You will learn about configuration space (C-space), degrees of freedom, C-space topology, implicit and explicit representations of configurations, and holonomic and nonholonomic constraints. You will also learn how to represent spatial velocities and forces as twists and wrenches. This material is at the core of the study of anything that moves (e.g., robots).
This course follows the textbook "Modern Robotics: Mechanics, Planning, and Control" (Lynch and Park, Cambridge University Press 2017). You can purchase the book or use the free preprint pdf. You will build on a library of robotics software in the language of your choice (among Python, Mathematica, and MATLAB) and use the free cross-platform robot simulator V-REP, which allows you to work with state-of-the-art robots in the comfort of your own home and with zero financial investment....

4.8

52 个评分

•

12 个审阅

Do you want to know how robots work? Are you interested in robotics as a career? Are you willing to invest the effort to learn fundamental mathematical modeling techniques that are used in all subfields of robotics?
If so, then the "Modern Robotics: Mechanics, Planning, and Control" specialization may be for you. This specialization, consisting of six short courses, is serious preparation for serious students who hope to work in the field of robotics or to undertake advanced study. It is not a sampler.
In Course 2 of the specialization, Robot Kinematics, you will learn to solve the forward kinematics (calculating the configuration of the "hand" of the robot based on the joint values) using the product-of-exponentials formula. Your efforts in Course 1 pay off handsomely, as forward kinematics is a breeze with the tools you've learned. This is followed by velocity kinematics and statics relating joint velocities and forces/torques to end-effector twists and wrenches, inverse kinematics (calculating joint values that achieve a desired "hand" configuration), and kinematics of robots with closed chains.
This course follows the textbook "Modern Robotics: Mechanics, Planning, and Control" (Lynch and Park, Cambridge University Press 2017). You can purchase the book or use the free preprint pdf. You will build on a library of robotics software in the language of your choice (among Python, Mathematica, and MATLAB) and use the free cross-platform robot simulator V-REP, which allows you to work with state-of-the-art robots in the comfort of your own home and with zero financial investment....

4.7

32 个评分

•

7 个审阅

Do you want to know how robots work? Are you interested in robotics as a career? Are you willing to invest the effort to learn fundamental mathematical modeling techniques that are used in all subfields of robotics?
If so, then the "Modern Robotics: Mechanics, Planning, and Control" specialization may be for you. This specialization, consisting of six short courses, is serious preparation for serious students who hope to work in the field of robotics or to undertake advanced study. It is not a sampler.
In Course 3 of the specialization, Robot Dynamics, you will learn efficient numerical algorithms for forward dynamics (calculating the robot's acceleration given its configuration, velocity, and joint forces and torques) and inverse dynamics (calculating the required joint forces and torques given the robot's configuration, velocity, and acceleration). The former is useful for simulation, and the latter is useful for robot control. You will also learn how to plan robot trajectories subject to dynamic constraints.
This course follows the textbook "Modern Robotics: Mechanics, Planning, and Control" (Lynch and Park, Cambridge University Press 2017). You can purchase the book or use the free preprint pdf. You will build on a library of robotics software in the language of your choice (among Python, Mathematica, and MATLAB) and use the free cross-platform robot simulator V-REP, which allows you to work with state-of-the-art robots in the comfort of your own home and with zero financial investment....

4.8

18 个评分

•

4 个审阅

Do you want to know how robots work? Are you interested in robotics as a career? Are you willing to invest the effort to learn fundamental mathematical modeling techniques that are used in all subfields of robotics?
If so, then the "Modern Robotics: Mechanics, Planning, and Control" specialization may be for you. This specialization, consisting of six short courses, is serious preparation for serious students who hope to work in the field of robotics or to undertake advanced study. It is not a sampler.
In Course 4 of the specialization, Robot Motion Planning and Control, you will learn key concepts of robot motion generation: planning a motion for a robot in the presence of obstacles, and real-time feedback control to track the planned motion. Chapter 10, Motion Planning, of the "Modern Robotics" textbook covers foundational material like C-space obstacles, graphs and trees, and graph search, as well as classical and modern motion planning techniques, such as grid-based motion planning, randomized sampling-based planners, and virtual potential fields. Chapter 11, Robot Control, covers motion control, force control, and hybrid motion-force control.
This course follows the textbook "Modern Robotics: Mechanics, Planning, and Control" (Lynch and Park, Cambridge University Press 2017). You can purchase the book or use the free preprint pdf. You will build on a library of robotics software in the language of your choice (among Python, Mathematica, and MATLAB) and use the free cross-platform robot simulator V-REP, which allows you to work with state-of-the-art robots in the comfort of your own home and with zero financial investment....

Northwestern University is a private research and teaching university with campuses in Evanston and Chicago, Illinois, and Doha, Qatar. Northwestern combines innovative teaching and pioneering research in a highly collaborative environment that transcends traditional academic boundaries.
...

退款政策是如何规定的？

我可以只注册一门课程吗？

可以！点击您感兴趣的课程卡开始注册即可。注册并完成课程后，您可以获得可共享的证书，或者您也可以旁听该课程免费查看课程资料。如果您订阅的课程是某专项课程的一部分，系统会自动为您订阅完整的专项课程。访问您的学生面板，跟踪您的进度。

有助学金吗？

我可以免费学习课程吗？

此课程是 100% 在线学习吗？是否需要现场参加课程？

此课程完全在线学习，无需到教室现场上课。您可以通过网络或移动设备随时随地访问课程视频、阅读材料和作业。

完成专项课程需要多长时间？

Each of the six courses is scheduled for 4 weeks, with a typical week requiring approximately 5 hours of work (reading, videos, quizzes, and projects). If you work steadily, you should be able to complete the Specialization in 24 weeks, with a total of approximately 120 hours of work.

What background knowledge is necessary?

This specialization is designed to be accessible to students who have taken typical college first-year (freshman) engineering courses. The student should have an understanding of:

Freshman-level physics, including f = ma; masses, springs, and dampers; vector forces; and vector torques (or moments) as the cross product of a distance vector and a force;

Linear algebra, including matrix operations, positive definiteness of a matrix, determinants, complex numbers, eigenvalues, and eigenvectors;

Some calculus, derivatives, and partial derivatives;

Basic linear ordinary differential equations; and

A little bit of programming experience.

Do I need to take the courses in a specific order?

It is highly recommended you follow the courses in the specified order, since the material builds on itself throughout the Specialization.

完成专项课程后我会获得大学学分吗？

Upon completing the Specialization, you will have studied material that might normally be covered in two semesters at the university level. You will be able to represent motions and forces (wrenches) in three-dimensional space; mathematically model the forward, inverse, and velocity kinematics of open- and closed-chain robots; plan collision-free robot motions among obstacles; analyze robot manipulation tasks with rigid bodies in frictional contact; and derive motion planners and feedback controllers for wheeled mobile robots. You will be able to write software supporting all of these activities, and you will verify your software on a state-of-the-art robot simulator. The high-level software you develop will be useful for almost any physical robot, once it is supplemented with drivers that connect the high-level software to the specific robot hardware.

Finally, upon completing this Specialization you will be equipped to take graduate-level courses in robot motion planning, manipulation, and control, or to interview confidently for a job in robot control.

还有其他问题吗？请访问 学生帮助中心。