Robotic systems typically include three components: a mechanism which is capable of exerting forces and torques on the environment, a perception system for sensing the world and a decision and control system which modulates the robot's behavior to achieve the desired ends. In this course we will consider the problem of how a robot decides what to do to achieve its goals. This problem is often referred to as Motion Planning and it has been formulated in various ways to model different situations. You will learn some of the most common approaches to addressing this problem including graph-based methods, randomized planners and artificial potential fields. Throughout the course, we will discuss the aspects of the problem that make planning challenging.
课程信息
您将获得的技能
- Motion Planning
- Automated Planning And Scheduling
- A* Search Algorithm
- Matlab
提供方

宾夕法尼亚大学
The University of Pennsylvania (commonly referred to as Penn) is a private university, located in Philadelphia, Pennsylvania, United States. A member of the Ivy League, Penn is the fourth-oldest institution of higher education in the United States, and considers itself to be the first university in the United States with both undergraduate and graduate studies.
授课大纲 - 您将从这门课程中学到什么
Introduction and Graph-based Plan Methods
Welcome to Week 1! In this module, we will introduce the problem of planning routes through grids where the robot can only take on discrete positions. We can model these situations as graphs where the nodes correspond to the grid locations and the edges to routes between adjacent grid cells. We present a few algorithms that can be used to plan paths between a start node and a goal node including the breadth first search or grassfire algorithm, Dijkstra’s algorithm and the A Star procedure.
Configuration Space
Welcome to Week 2! In this module, we begin by introducing the concept of configuration space which is a mathematical tool that we use to think about the set of positions that our robot can attain. We then discuss the notion of configuration space obstacles which are regions in configuration space that the robot cannot take on because of obstacles or other impediments. This formulation allows us to think about path planning problems in terms of constructing trajectories for a point through configuration space. We also describe a few approaches that can be used to discretize the continuous configuration space into graphs so that we can apply graph-based tools to solve our motion planning problems.
Sampling-based Planning Methods
Welcome to Week 3! In this module, we introduce the concept of sample-based path planning techniques. These involve sampling points randomly in the configuration space and then forging collision free edges between neighboring sample points to form a graph that captures the structure of the robots configuration space. We will talk about Probabilistic Road Maps and Randomly Exploring Rapid Trees (RRTs) and their application to motion planning problems.
Artificial Potential Field Methods
Welcome to Week 4, the last week of the course! Another approach to motion planning involves constructing artificial potential fields which are designed to attract the robot to the desired goal configuration and repel it from configuration space obstacles. The robot’s motion can then be guided by considering the gradient of this potential function. In this module we will illustrate these techniques in the context of a simple two dimensional configuration space.
审阅
- 5 stars55.21%
- 4 stars26.95%
- 3 stars10.62%
- 2 stars3.80%
- 1 star3.40%
来自ROBOTICS: COMPUTATIONAL MOTION PLANNING的热门评论
I like this course because they are covering really complicated topics in very less material. And the assignments are amazing. They are worth the learning effect they create.
The course material and videos are very good. Small bugs in the exercise can be a bit of headache. Luckily, digging the community forum there is always a high chance to solve your issue.
Good course..but I wish the course was longer and the lectures and quizzes more detailed. Looking to more courses on these topics.
This course is supposed to be easier but somehow it also makes it difficult because implementations of the algorithms in Matlab are bit non-standard as I am used to. Altogether very challenging.
关于 机器人 专项课程
The Introduction to Robotics Specialization introduces you to the concepts of robot flight and movement, how robots perceive their environment, and how they adjust their movements to avoid obstacles, navigate difficult terrains and accomplish complex tasks such as construction and disaster recovery. You will be exposed to real world examples of how robots have been applied in disaster situations, how they have made advances in human health care and what their future capabilities will be. The courses build towards a capstone in which you will learn how to program a robot to perform a variety of movements such as flying and grasping objects.

常见问题
我什么时候能够访问课程视频和作业?
我订阅此专项课程后会得到什么?
有助学金吗?
还有其他问题吗?请访问 学生帮助中心。